
6 Statistical treatment of floods 

A flood IS an unusually high stage in a river that can cause damage to adjacent 
areas. Floods vary spatially and temporally in magnitude and are often 
measured through their peak discharges. The structural and hydraulic designs 
of dams and bridges are based on such extreme flows in water courses. 
Furthermore, the frequency of occurrence, the maximum stage reached, the 
volume of flood water, the area inundated and the duration of floods are of 
importance to the civil engineer when planning and designing roads, buildings 
and structures. In addition, there are dependent economic problems such as 
flood-plain zoning and flood insurance. 

The peak flow and hydrograph of a flood are controlled by many complex and 
interrelated factors. In· the first place, the amount, intensity and areal extent of 
the causative storm, antecedent precipitation, accumulated snow, temperature 
and vegetation are significant climatic (or climatically affected) factors. 
Secondly, physiographical properties such as the size, shape, slopes and 
orientation of the catchment, especially in relation (o storm movements and 
isohyetal lines, channel and flood-plain $torage and soil composition exert a 
large influence. In addition, man-made or natural changes in catchment 
characteristics and hydraulic parameters of flow cause further complications. 

On account of these complexities, hydrologists have had to resort to 
statistical methods. The main objective in this approach is to estimate the 
magnitudes that are exceeded with specific probabilities. This chapter is for the 
purpose of describing and critically examining the methods of flood estimation. 
These include the use of type I (Gumbel), II and III extreme value, lognormal, 
Pearson type III, log Pearson type III, binomial, Poisson and multinomial 
distributions. In addition, the peaks-over-threshold method is explained. 
Empirical methods of regional flood frequency analysis and fundamentals of 
the probable maximum flood technique are also described 1 . 

1 Auxiliary treatment through unit hydrograph theory for calculating flood volumes, 
durations and the like are outside the scope of this text and reference may be made, for 
example, to Wilson (1974) and to the Natural Environmental Research Council (1975, 
vol. 1, chapters 5, 6). 
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6.1 Annual maximum series and return periods 

Although floods are high flows which occur at varying intervals of time, it 
facilitates the analysis to study flood events within constant intervals of time. 
Also, it is preferable to choose an interval of I year rather than, say, a period of 
3 months which brings in additional complications because of the seasonal 
effect. 

Let the random variable X; denote the maximum instantaneous flow in year i, 
i = 1, 2, 3, ... , at a gauging station. These X; values are said to constitute an 
annual maximum series. In practice, an observed sequence X;, i = 1, 2, 3, ... N, 
is used to make probabilistic estimates of flood flows. Quite often the annual 
maxima are taken from discrete daily mean flows, and except for flashy rivers 
(which rise and fall rapidly at times of flood) these have an approximate linear 
relationship with the instantaneous peaks2 • 

Initially, the treatment will be confined to annual maximum series. The 
alternative approach is to analyse a so-called partial duration series. This 
pertains to peak flows that exceed a given threshold value and is the subject of 
section 6.9. 

In all statistical flood studies, a particularly important concept is that of the 
return period T. This is associated with a fixed magnitude of flood discharge 
called the T-year flood and is, in fact, the average time interval between 
exceedances of that magnitude3 . As will be defined in subsection 6.3.3, Tis the 
reciprocal of probability with which a variate exceeds the given magnitude. This 
can also be explained in terms of percentiles, the method of describing 
distributions by identifying particular points on the distribution function; for 
example, the 10-year flood is the ninetieth percentile of the distribution of 
annual floods. Note that there will be some T-year periods in which the T-year 
flood will be exceeded more than once· and other such periods in which the 
highest flood is less than the T-year flood 4 • 

6.2 Distribution of extreme values 

Extreme value theory, which is used in flood estimation, dates back to Frechet 
(1927) and to Fisher and Tippett (1928). To explain the fundamentals, consider 
a set of independent random variables H-j,j = 1, 2, 3, ... , n, with a common 
cumulative distribution function G(x), where xis an observed value and n is the 

2 See, for example, Gumbel (1958a). 
3 The term return period was originally used by Fuller (1914) who was also the first to 
apply frequency methods in flood estimation. 
4 Specifically, if I 0 000 years of data are available, there will be, on average, no flood in 
excess of the 100-year flood in about 37 of the 100 centuries. Also, the expectation is that 
in each of about 37 other centuries there will be one such flood, and in the remaining 
period two or more such floods would occur in each century. It is assumed here that the 
flood peaks are mutually independent; the calculations are based on the Poisson 
distribution explained in section 6.9. 
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number of equispaced data points within a fixed period of, say, 1 year. Also, let 
{»(1>, »(2>, »(3>, ••• , JJ(nJ} represent the ordered set of the same variables in 
which »(1> is the smallest and JJ(nJ is the largest. The distribution of JJ(nJ is given 
by 

Pr{ »(,> ~ x} = Q,(x) 

= Pr(W1 ~ x)Pr(W2 ~ x) Pr(W3 ~ x) ... Pr ('W,, ~ x) 

= {G(x)}" (6.1) 

in which Pr denotes probability. 
As n increases indefinitely, Qix) approaches one of three asymptotic types 

known as the types I, II and III extreme value distributions. In the first type, X is 
an unbounded variable; the second and third types deal with variables with 
lower and upper limits respectively. Because the type I distribution was 
extensively developed and applied to flood events by Gumbel (1958a), it is often 
referred to as the Gumbel distribution5• A simplified derivation of this now 
follows. 

6.3 Gumbel distribution 

The Gumbel distribution of extreme values results from any initial distribution 
of the exponential type. Examples of these are the normal and gamma 
distributions; the right tails of their density functions converge to the 
exponential form for large values of the variable. Accordingly, g(x), which is the 
derivative ofG(x) in equation 6.1, can be approximated to the form A.e-.<x. This 
leads to a probability of non-exceedance given by G(x) = 1 - e- .<x. Therefore, 
from equation 6.1 

Q,(x) = Pr{ W(,J ~ x} 
= (1 - e- .l.x)n (6.2) 

By changing th~ location and scale, equation 6.2 can be written as Q,(x) = [ 1 
-exp{ -a(x-u)}/n]", where u and a are the location and dispersion 
parameters respectively. Hence, 

lim { Q,(x)} = F(x) 
n-+ oo 

= exp{ -e-"(x-uJ} (6.3) 

which is the Gumbel (double-exponential) distribution function6 • Originally, 
Fisher and Tippett (1928) using a functional relation derived the general form of 

5 'It seems that the rivers know the theory,' said Gumbel (1967) in what was to be his 
last address to engineering hydrologists, 'It remains to convince the engineers-not only 
in underdeveloped countries--of the validity of this analysis.' Court (1952) gives a 
simple explanation of the Gumbel procedure as originally formulated. 
6 For a rigorous mathematical proof, see Gumbel (1958a, pp. 156-9), Kendall and 
Stuart (1977, pp. 352-6) or Bury (1975, pp. 369-71). The particular limit theorem is 
proved in subsection 6.8.2. 
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equation 6.3 and the other two types of extreme value distributions included in 
section 6.4. 

If we follow the notation of Gumbel (1958a) and substitute the value y of a 
reduced (that is, dimensionless) random variate Y where 

y = a(x- u) (6.4) 

the basic form of the Gumbel distribution becomes 

F(y) = exp( -e-Y) (6.5) 

the density function of which is 

f(y) = dF(y)/dy 

(6.6) 

6.3.1 Moment-generating function 

The moments of a function such as the Gumbel distribution can be obtained 
through its moment-generating function (MGF). For a random variate Y with 
moments of all orders (as explained in section 3.3) and a probability density 
function f(y), the MGF is defined as 

My(t) = E(ern 

(6.7) 

where E denotes expectation (that is, expected value) and tis a dummy variable 7 • 

From the series expansion of erY, 

M y(t) = E{1 + tY + (tY)2/2! + (tY)3j3! + ... } 
6.3.2 Statistical properties 

(6.8) 

By substituting z = e- Y, which makes dz/dy = - e- Y, it follows from equations 
6.6 and 6.7 that for the Gumbel distribution 

Replacing -tin the right-hand side by (1- t) -1 it is seen, from the standard 
form of the gamma function given in section 3.2, that 

My(t) = r(l- t) (6.9) 

7 Note that in the more advanced books the characteristic function E(e•Yt), which is the 
expectation of a complex function, is used in place of the MGF. 
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From equations 6.8 and 6.9, therefore, the rth moment of the Y population is 
given by 

d' I Jl~( Y) = -d r r(1 - t) 
t t=O 

(6.10) 

for the Gumbel distribution. It follows, by taking the derivative of M y(t) and by 
putting t = 0, that 

11'1 ( Y) = _dd r(l- t) j 
t t = 0 

= -r(l-t)l/!(1-t)j,=o 

= -1/1(1) (6.11) 

where 1/J(t) = d[ln{r(t)} J/dt is the psi function in subsection 3.4.1; this is also 
called the digamma function. From tables, 1/1(1) = -0.5772, which is known as 
Euler's constant8 • Hence, 

E(y) = 11'1 ( Y) = 0.5772 

where, as noted, y is a reduced variate. Also, 

Jl2( Y) = r(l-t) [ di/J~t- t) + {I/J(1-t)}2 J 't=O (6.12) 

where di/J(t)/dt = 1/J'(t) is the trigamma function and is tabulated in some 
books9 • Now 1/1'(1) = n2 /6. Hence, Jl2(Y) = n2 /6+(0.5772)2 and var (Y) 
= Jl 2 ( Y) = Jl2(Y) -{Jl~( Y)} 2 = n2 j6, which approximates to 1.6449. 
Similarly, by using the multigamma functions, 1/1"(1) and 1/113>(1), it can be shown 
that the coefficient of skewness is 1.1396 and the coefficient of kurtosis is 5.4000. 

Because the skewness and higher coefficients are the same for both Yand X 
populations, the only changes that arise in fitting are those of location and 
dispersion as given by equation 6.4. The maxima and minima of the density 
functiotlf(y) are found from the derivative of f(y) in equation 6.6 and these are 
at y = oo, - oo and 0, the first two of which are the minimum points and the 
third is a maximum point (showing that the mode is above the origin for the 
variate Y). The median value, obtained by setting F (y) in equation 6.5 to 0.5, is 
0.3665. Also, the maximum ordinate which occurs at y = 0 is 1/e = 0.3679, 
which is a constant for both the X and Y populations. These properties and 
the shape of the Gumbel density function are shown in figure 6.1, in which 
comparison is made with the normal density function. 

8 See, for example, Abramowitz and Stegun (1964, pp. 267-71). 
9 See, for example, Tribus (1969, p. 112). 
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Figure 6.1 Gumbel and normal density functions compared 

6.3.3 Definition of return period 

213 

5 

Let the reduced random variates Y; denote the maximum floods in years i, i = 1, 
2, 3, ... , respectively. Then, if the Y; values are serially independent, the 
probability that the time interval f between exceedances of a flood magnitude y 
(in reduced units) equals n is given by 

Pr(f = n) = Pr(Y1 < y)Pr(Y2 < y) ... Pr(¥,_ 1 < y)Pr(Y, > y) 

= {Pr(Y<y)}"- 1 Pr(Y>y) 

For the second equality we assume that theY; values are identically distributed. 
This geometric distribution corresponds to equation 5.6. Here, the variable n 
can take any value from 1 to oo, and the expected value E(h is found from the 
properties of the geometric distribution as follows. 

00 

E(i) = L nPr(T = n) 
n=1 

00 

= L n{1-Pr(Y> y)y- 1 Pr(Y> y) 
n=1 

= 1/Pr(Y> y) 

The return period Tis commonly written instead of E( i) above 10• 

10 Lloyd (1970) has shown that the variance of Tis { 1- Pr( Y > y)} I {Pr(Y > y) } 2• If the 
flood events are serially correlated, the variance is greater; the return period is then given 
by T = 1/Pr(Y, > y I Y..-1 < y). 
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6.3.4 Relationship between Gumbel variate and return period 

From equation 6.5 and subsection 6.3.3 

1-exp( -e-Y) = 1/T 

Hence, 

y = -ln{ln(T)-ln(T-1)} 

Now 

y = -ln { - ln ( 1 - 1 IT) } 

= -ln{ -(-1/T)+t(-1/T)2 -t(-1/T)3 + ... } 

(6.13) 

(6.14) 

from Maclaurin's theorem. If only three terms are used in the series expansion, 

y ~ -ln(1/T + 1/2T2 + 1/3T3 ) = ln { 6T3 /(6T 2 + 3T + 2)} 

Hence, the approximations 

y ~ ln(T-1/2) or y ~ ln(T) (6.15) 

may be used in place of equation 6.14 for T > 10 years if errors up to 0.5 % and 
2.5% respectively can be tolerated; the second approximation is sufficient for all 
practical purposes when T > 25 years. 

Equation 6.14 gives a non-linear relationship between the value y of the 
reduced variate and the return period T. A few pairs of values (y, T) are as 
follows: 0, 1.58 (most probable flood); 0.3665, 2 (median flood); 0.5772, 2.33 
(mean flood); 1.2459, 4.00; 3.9019, 50.00; 4.6002, 100.00; 6.2136, 500.00. 
Engineers and hydrologists have been plotting experimental data on special 
types of paper since Hazen (1914), a civil engineer, originated the graphical 
linearisation of the normal distribution. The method is used as a verification of 
the suitability of one or more assumed distributions for a given sample of data. 

6.3.5 Probability paper 

Gumbel probability paper (suggested originally by Powell (1943)) may be 
drawn as follows. Initially, values of the return period T, such as 1.01, 1.1, 1.2, 
1.3, 1.5, 2, 3, 4, 5, 10, 15, 20, 30, 40, 50, 60, 100, 200 and 250, are selected. After 
computing the corresponding values of the reduced variate y by using equation 
6.14, vertical lines spaced at distances directly proportional to the differences 
between the y values are drawn, and the return periods T are shown 
correspondingly against these lines (figure 6.2). In this way they values are on a 
linear scale, but the return periods Tare on a double-exponential scale, as given 
by equation 6.13. On the other hand, if a graph of x against y is drawn on 
arithmetic paper, a straight-line plot 

x=y/a+u (6.16) 

which follows from equation 6.4, will give the flood magnitudes x for various y 
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• Plotted by using Weibull plotting position 

o Plotted by using Gringorten plotting position 

5~~~~~~~~---L----~~--~----~--~~~--~~~ 
1.1 1.21.3 1.5 2 3 15 20 

Return period T 

Figure 6.2 Gumbel distribution fitted to annual maxima from daily inflows to Caban 
Coch Reservoir for the period 1909 to 1928 

values. However, it is more meaningful to relate x to the return periods T rather 
than to the y values. Therefore, the scales are chosen accordingly, and from 
equations 6.14 and 6.16 the relationship of x against Tis given by 

x(T) = u -ln{ln(T) -ln(T -1)} /a (6.17) 

This shows that a straight line could be fitted if the observed values are plotted 
on Gumbel paper. It provides a quick verification of fit without using the 
goodness-of-fit tests described in chapter 3; a good fit would justify the 
acceptance of the Gumbel distribution. When plotting the data, however, the 
true return periods associated with each of the items of data are not known. 
Therefore, the accepted practice is to use what is termed a plotting position 11 . 

6.3.6 Plotting positions 

Let m denote the rank of N items of annual maxima which are ordered so that 
the first value (m = 1) is the largest and the smallest (m = N) is placed last 12. 

One possible method, first applied to flood flows in California, is to take m/ N 
as the probability ofexceedance. Accordingly, 1/T(= 1-F(x))=m/N, but 
the smallest has a probability of exceedance equal to 1, which is not found 
on probability paper. An alternative plotting position is to make T = N I (m- 1 ), 
but the drawback is that the largest flood cannot be plotted because it has a 

11 Gumbel (l958a, pp. 32-6) gives conditions for the choice of a plotting position; for 
example, it should be possible to plot all the observations. Also, the plotting position 
ought to depend on the assumed distribution. 
12 For plotting purposes, it is convenient to reverse the conventional method of 
ordering as defined in section 6.2. 
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return period of infinity, or in other words a probability ofzero. Hazen (1930), a 
pioneer in flood studies, suggested the alternative T = N /(m -1/2) in order to 
plot all the data. This was objected to by Gumbel (1958b) on the grounds that 
the highest flood has a return period of 2N. Instead, he recommended the 
use of the Wei bull plotting position T = (N + 1)/m for the Gumbel distribution. 
Subsequently, Gringorten (1963) showed that T = (N + 0.012)/(m- 0.44) is a 
better approximation as an unbiased plotting position for this distribution. To 
explain the meaning of bias in this context, consider a sample of N annual 
maxima, from which I subsamples each of length N /I (with N /I > 30, say) are 
formed and in which the values in each subsample are ranked in order. Then, an 
unbiased plotting position is such that, if average values of the same rank from 
different samples are plotted and if I is indefinitely large, these values will lie on a 
line which represents the distribution of the population 13. Further comments 
on plotting positions from the viewpoint of the practising engineer will be given 
in section 6.7. 

Four of the commonly used plotting positions are given in table 6.1. Also 
shown are the return intervals for the largest, second largest and smallest flood 
from a sample of 100 items. 

Table 6.1 Plotting positions 

Plotting position Usage For N = 100 

T for m = 1 T for m = 2 T for m = 100 
(100-year (50-year (1.01-year 
flood) flood) flood) 

Wei bull, Used by 101 50.5 
T = (N + 1)/m Gumbel 

Gringorten, Extreme value 179 64 
T = (N + 0.12)/(m distributions 
-0.44) 

Hazen, Gamma 200 66.7 
T = N/(m-t) distribution 

BJorn, Normal 160.4 61.7 
T=(N+t)/(m-f) (and lognormal) 

distributions 

6.3. 7 Method-of-moments fitting procedure 

From the relationship Y = 1X(X- u) in equation 6.4, 

E(y) = IX{ E(X)- u} 

1.01 

1.01 

1.01 

1.01 

(6.18) 

13 For discussions on plotting positions, see Benson (1962b), Stipp and Young (1971) 
and the Natural Environmental Research Council (1975, vol. 1, chapter 2); also, 
Langbein (1960) gives simple derivations for some plotting positions; the treatment by 
Kimball (1960) and Barnett (1975) is more sophisticated. 
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and 

var( Y) = IX 2var(X) (6.19) 

where var denotes variance. Therefore if we substitute 0.5772 for E(y) and 1t 2 /6 
for var(y) (from the results previously obtained in subsection 6.3.2) and sample 
estimators x and s2, for E(X) and var(X) respectively, the moment estimators of 
the parameters IX and u are 

li = 1.282/s (6.20) 

and 

u = x -0.45s (6.21) 

Hence, from equations 6.17, 6.20 and 6.21, 

.X( n = x- s[0.4500 + 0.7797ln{ In( T) -In( T- 1)}] (6.22) 

Using this formula a theoretical straight line could be drawn on the Gumbel 
graph paper of x(1) against T to represent a sample of annual maxima x 1, x2 , 

x 3, ••• , xN with estimated mean x and standard deviations respectively. Two 
points would obviously suffice to define this line, and the Gringorten plotting 
position can be used to represent the data. This is, of course, on the assumption, 
which is not necessarily true, that the data are distributed in this way. 

Example 6.1 Ranked annual maxima from mean daily inflows to Caban 
Coch Reservoir during the period 1909 to 1928 are as follows. 

Annual maxima ( x 106 m3 ) 

7.31 
6.07 

7.30 
6.06 

7.22 
5.82 

6.90 
5.81 

6.64 
5.75 

6.53 
5.65 

6.48 
5.51 

6.38 
5.37 

6.30 
5.20 

6.12 
5.08 

Plot the data on Gumbel paper, and estimate the mean and standard 
deviation from the sample. Using these statistics, fit a straight line to the data. 
Estimate the 50-year flood. 

Let x;, i = 1, 2, ... , N, denote the maxima where N = 20 and let L denote 
N 

L . The estimated mean x = }:x;/ N = 6.175 x 106 m3 and s = { (}:xt IN 
i= 1 

-x2 )N/(N -1)} 112 = 0.6746 x 106 m3 is the estimated standard deviation14. 

Equations 6.20 and 6.21 provide estimates a = 1.9011 and u = 5.8714 of the 
parameters, and the Gringorten plotting position T = (N + 0.12)/(m- 0.44) 

14 This formula is used by Gumbel (1941) to compute what he terms 'the observed 
standard deviation'. As a matter of interest, if the X; values are normally distributed, then 
in order to obtain a strictly unbiased estimate of s, the quantity K = 2{r(N/2)ll/[r{ (N 
-1)/2}] 2, in which r denotes the complete gamma function, should replace the divisor 
N -1 in the formula; see, for example, Holtzman (1950). 
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gives the return periods as follows: 35.9, 12.9, 7.86, 5.65, 4.41, 3.62, 3.07, 2.66, 
2.35, 2.10, 1.91, 1.74, 1.60, 1.48, 1.38, 1.29, 1.21, 1.15, 1.08 and 1.03. The ranked 
values are plotted, and a straight line is then fitted by using the method of 
moments. This is done by calculating two values from equation 6.22, such as 
x(2) = 6.06 and x(50) = 7.92. These two points define the (full) straight line of 
x(T) against T. 

Figure 6.2 shows that, if the two largest values are disregarded, the Gumbel 
distribution as fitted by the method of moments provides a good fit to the data. 
It is quite possible that this sample is biased downwards and the two highest 
values represent return periods less than 20 years. Unfortunately, there is no 
satisfactory method of verifying this, but we could, in the first instance, fit the 
Gumbel distribution by different methods and see whether there is a significant 
change in the results. 

6.3.8 Gumbel's fitting method 

In Gumbel's fitting method, the estimation of the parameters u and a are based 
on the Weibull plotting position T = (N + 1)/m, where N is the sample size and 
m is the rank commencing with the largest value. If we use Gumbel's notation, 
the procedure is to evaluate the mean y Nand the standard deviation aN = { ~(y 
- y N) 2 j N} 112 of theN values of the reduced variate Y, after substituting each of 
the values m = 1, 2, 3, ... , N in T = (N + 1)/m and then calculating the 
corresponding y values from equation 6.14. It will, of course, be more 
convenient here to refer to tables of y N and aN such as those provided by 
Gumbel (1954, 1958a). Alternatively, refer to table 6.2, which is more accurate. 

Table 6.2 Expected means y N and standard deviations liN of Gumbel reduced variates 

N y liN N YN liN N YN liN 

16 0.5154 1.0306 33 0.5388 1.1225 50 0.5485 1.1607 
17 0.5177 1.0397 34 0.5396 1.1256 51 0.5489 1.1623 
18 0.5198 1.0481 35 0.5403 1.1285 52 0.5493 1.1638 
19 0.5217 1.0557 36 0.5411 1.1313 53 0.5497 1.1653 
20 0.5236 1.0628 37 0.5417 1.1339 54 0.5501 1.1668 
21 0.5252 1.0694 38 0.5424 1.1365 55 0.5504 1.1682 
22 0.5268 1.0755 39 0.5430 1.1390 56 0.5508 1.1695 
23 0.5282 1.0812 40 0.5436 1.1413 57 0.5511 1.1709 
24 0.5296 1.0865 41 0.5442 1.1436 58 0.5515 1.1722 
25 0.5309 1.0914 42 0.5448 1.1458 59 0.5518 1.1734 
26 0.5321 1.0961 43 0.5453 1.1479 60 0.5521 1.1747 
27 0.5332 1.1005 44 0.5458 1.1499 70 0.5548 1.1854 
28 0.5343 1.1047 45 0.5463 1.1518 80 0.5569 1.1938 
29 0.5353 1.1086 46 0.5468 1.1537 90 0.0586 1.2007 
30 0.5362 1.1124 47 0.5472 1.5555 100 0.5600 1.2065 
31 0.5371 1.1159 48 0.5477 1.1573 Cl) 0.5772 1.2825 
32 0.5380 1.1193 49 0.5481 1.1590 



STATISTICAL TREATMENT OF FLOODS 219 

Therefore, substituting y N for E( Y) and u~ for var( Y) and the sample 
estimators x and s2 for E(x)and var(x) respectively in equation 6.18 and 6.19, we 
obtain the following. 

(6.23) 
and 

u' = x- YNsluN (6.24) 

Hence, from equations 6.17, 6.23 and 6.24, 

x'(1) =X- (s/uN)[YN+ln{ln(1)-ln(T-1)}] (6.25) 

Example 6.2 Plot the extreme value data from example 6.1 using the Wei bull 
plotting position. Hence, fit a straight line using Gumbel's fitting procedure, and 
estimate the 50-year flood. 

The ordered return periods T = (N + 1)/m are as follows: 21, 10.5, 7, 5.25, 
4.2, 3.5, 3, 2.625, 2.333, 2.1, 1.909, 1.75, 1.615, 1.5, 1.4, 1.313, 1.235, 1.167, 
1.105, 1.05. As a matter of interest, the corresponding y values are calculated as 
follows: 3.02, 2.302, 1.87, 1.554, 1.302, 1.089, 0.903, 0. 735, 0.581, 0.436, 0.298, 
0.166, 0.0355, -0.0940, -0.2254, -0.361, -0.506, -0.666, -0.855, -1.113, 
from which y N = 0.5236 and uN = 1.0628; these tally with the values given in 
table 6.2. (Substituting the computed values from example 6.1 of x and s in 
equations 6.23 and 6.24, we find a'= 1.5754 and u' = 5.8426.) From equation 
6.25, x'(2) = 6.08 and .X' (50) = 8.32. These two points define the broken line in 
figure 6.2. Notice that the differences between the plotted points are mainly in 
the high and low values. 

6.3.9 Frequency factors for Gumbel distribution 

Following Chow (1951, 1964), we can write equations 6.22 and 6.25 in the form 

x(1) = Jl + K(1)u (6.26) 

to represent the population of annual maxima. That is to say, an annual 
maximum with return period Tis the sum of the mean and a constant K(1) times 
the standard deviation of the maxima. The function K(1), for a particular T, 
depends on the form of the density function of the maxima. It is clear from 
equation 6.22 that, for the Gumbel distribution and the method-of-moments 
procedure, 

K(1) = - [0.4500 + 0.7797ln {In (1) -ln(T- 1)}] 

Some values of K(1) are given in table 6.3. 

Table 6.3 Values of K(T) using the method of moments 

T 10000 1000 500 200 100 50 20 10 2.33 

K(T) 6.73 4.94 4.39 3.68 3.14 2.59 1.87 1.30 0 

(6.27) 

1.5 

-0.38 
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For Gumbel's method of fitting, it follows from equation 6.25 that 

K(1) = - [YN +In {ln(J) -ln(T- 1)} ]faN (6.28) 

Fora given sample of size N, y NandaN are known, and this formula can be used 
to calculate K ( T) through Gumbel's method for any value of T. 

6.3.10 Confidence limits 

It can be shown that the variance of the T-year flood estimated, from a sample of 
size N with an estimated variance s2, by Gumbel's fitting method is 

var{x'(T)} = (s2 jN)[1 + 1.14W(1){ (N -l)/N} 1 i 2 

+ W(1)2(1.1-0.6/N)] (6.29) 

where W(T) = {.Y N- y(T)} faN in which y(T) is the value of y obtained from 
equation 6.14 andy Nand aN are the mean and standard deviation respectively 
of theN y values 15 . 

Then, if we assume that the sampling distribution of the T-year flood is 
normal, the 100(1- oc)% confidence limits of x(J) are 

.X'( 1) ± z, 12 [ var { x'(J)}] 112 

where z, 12 is the value which a standard normal deviate exceeds with probability 
oc/2. Strictly speaking, the normal distribution is applicable only when N is large, 
say, of the order of 200 or greater and if x'(J) behaves as an arithmetic mean. 

For the method-of-moments fitting procedure, the variance of the estimated 
T-year flood is given by 

var{ x(1)} = (s 2 jN) [ 1 + l.l4K(1) + K(1) 2 { 0.6 + 0.5N j(N -1)}] 
(6.30) 

for which equation 6.27 gives the K(J) function 
Example 6.3 Using the data in example 6.1 and equation 6.30, calculate the 

95% confidence limits of the population value of x( 1), for T = 2, 5, 10, 20, 30, 50. 

s2 j N = 0.67462 /20 
= 0.02276 

{0.6 + 0.5N j(N -1)} = 0.6 + 10/19 
= 1.1263 

The calculations are given in table 6.4. 

15 Lowery and Nash ( 1970) and Kaczmarek ( 1957) give derivations; see also the World 
Meteorological Organisation (1974, p. 5.26). 
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6.3.11 Maximum likelihood method of estimation 

The ML method of estimation is described in section 3.4. From equations 6.4, 
6.5 and 6.6 the probability distribution and density functions of the Gumbel 
distribution are given by 

F(x) = exp{ -e-(x-u)a} 

and 

f(x) = exe-(x-u)aexp{ -e-(x-u)a} 

respectively. For a sample xi, i = 1, 2, ... , N, the log likelihood function, 
L*(x 1 , x2 , ..• , xN I u, ex), which is conditional to the values u and ex of the 
parameters, is given by 

L* = -~)xi- u)ex- ~)-(x,-u)a + N ln(ex) (6.31) 

N 

where L denotes L . The partial derivatives of equation 6.31 are 
i = 1 

(6.32) 

and 

(6.33) 

The ML estimators u and a of the parameters are obtained by setting a L *I oex 
= 0, oL*jou = 0. For the ML conditions therefore, from equation 6.33 

exp(ua) = N / L exp(- &x;) (6.34) 

and, from equation 6.32 after substituting from equations 6.33 and 6.34 and 
simplifying, 

1/a =X-L { xiexp( -axi)} /I exp(- ax;) (6.35) 

where x = L x;/ N. Also, from equation 6.34, 

u = -(l/a)ln{1/N)"Lexp(-&x;)} (6.36) 

A simple method for solving equations 6.35 and 6.36 is to estimate an initial 
value of ex by the method of moments and then to substitute it in the right-hand 
side of equation 6.35; the reciprocal of equation 6.35 will give the next trial value. 
Therefore, the third value of ex is made equal to the weighted average of the first 
and second, and equation 6.35 is used again to obtain a fourth value; here, the 
most recent value deserves a greater weight. The routine is repeated till equation 
6.35 holds, and then, if a is substituted in equation 6.36, u is found 16. All these 

16 Gumbel (1958b, pp. 231-4) explains the methods of B. F. Kimball. Elsewhere, a 
procedure to find numerical solutions for a and a is given by Jenkinson (1969, pp. 205-
9), and this is followed by the Natural Environmental Research Council (1975, vol. 1, 
pp. 85-9). Also, Panchang (1969) shows how to obtain a solution iteratively. 
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trial-and-error methods could be easily implemented through a digital com­
puter. However, a pocket calculator was used for the short sequence in the next 
example. 

Example 6.4 Fit the Gumbel distribution by the ML method to the data 
given in example 6.1. Estimate the parameters and the 50-year flood. 

The first trial value of parameter IX is made equal to 1.9011, which is obtained 
from example 6.1. After substituting this in the right-hand side of equation 6.35, 
the second estimate of 1.6201 is obtained from the reciprocal. Another trial 
value of IX, say, (2 x 1.6201 + 1.9011)/3 = 1.7138 used in the right-hand side of 
equation 6.35 gives the next estimate of 1. 7351. Finally, a = 1. 726 is thought to 
be sufficiently accurate (considering the data) and, from equation 6.36, u 
= 5.861. Also, x(50) = 8.12 from equation 6.17. This estimate of the 50-year 
flood is higher than the value obtained by the method of moments but is less 
than that from Gumbel's method. 

In order to place confidence limits on the x(T) values found by the ML 
method, it can be assumed that these are asymptotically normally distributed. 
The standard error function which is required is somewhat complicated; the 
procedure is comparable with that used by Moran (1957). 

Comments on the use of the ML method such as its dependence on an 
assumed distribution are given in section 3.4. Of course, any other method 
which assumes a particular probability model will give unsatisfactory results if 
the probability model is itself incorrect. This point is taken up again in section 
6.7. There has been criticism by Gumbel (1967) that the ML method gives undue 
weight to the smaller values; although this may not be a fair criticism, it should 
not be forgotten that engineers looking for practical means of extrapolation 
tend to give more attention to the larger values in the data 1 7 • 

6.3.12 Limitations in Gumbel method 

It should be noted that the limiting form of the extreme value distribution is 
reached extremely slowly. On theoretical considerations, the value of n in 
equation 6.1 should be extremely large, perhaps greater than 109 , for the 
asymptotic form (equation 6.3) to hold. On the contrary, n is taken as 365 when 
applied to discrete daily series 18 . 

In applications it is found that there is a serial dependence and periodicity in 
the data, from which the extremes are drawn. This is generally true of daily and 
shorter-interval hydrological or meteorological data. However, Watson (1954) 
has shown that the limiting distribution will also hold when the process is of a 
certain moving-average type. On the other hand, Gumbel (1967) has warned 
about errors of estimation arising from cycles, pseudocycles and trend-like 
movements. Furthermore, the theory is not strictly valid if the extreme values 
are not identically distributed. This happens when there are different causative 

17 There are also other fitting procedures such as Downton's method, as used, for 
example, by Huxham and McGilchrist (1969). 
18 See, for example, Gumbel (1958a, p. 4). 
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factors for floods such as frontal rains, thunderstorms and melting of snow. 
There is also another operational point. Because the left extremities of density 

functions of the X and ¥populations are at - oo, some negative values can be 
generated by the Gumbel probability model. For the reduced random variate Y, 
it follows from equation 6.4 (as could be visualised from figure 6.1) that the 
probability of a negative value is 1/e = 0.3679. If we consider a practical case, 
it is found that, by substituting in equation 6.27, K (1.01) = -1.6424, which is 
applicable for a very low value that is exceeded by the annual maxima in 99 years 
out of 100. Hence, if a > 0.6089Jl in equation 6.26, a negative flood will occur on 
average once in 100 years. However, for the estimated value of the standard 
deviation a in example 6.1, this period is much longer than 100 years. 

Finally, as for other probability distribution functions, sampling errors in the 
estimates of parameters may be quite large, the implication being that 
extrapolations may be subject to large errors. Benson (1960) showed that for a 
hypothetical sample of 1000 items of flood data from a known Gumbel 
population, parameters estimated from independently chosen subsamples (such 
as those from a set of 40 subsamples of 25-year periods) are vastly different. It 
was seen that straight-line plots representing these subsamples have widely 
varying intercepts and gradients, the variabilities increasing, as expected, in 
inverse proportion to the subsample lengths. It is found, for instance, that to 
estimate values of 50- and 100-year floods which are within 25% of the correct 
value, 95% of the time, minimum sample lengths of 39 and 48 years respectively 
are required. Again, for the estimation of a 50-year flood with a maximum error 
of 10 %. record lengths of 90 or 110 are required for chances of success equal to 
80% or 95% of the time respectively. 

6.4 General extreme value distribution 

As already noted, the Gumbel or type I extreme value distribution is a particular 
type of the asymptotic or limiting distribution applicable to extreme values. The 
two-parameter Gumbel distribution is advantageous in the theoretical treat­
ment of flood events, but because of the limitations in application it would be 
appropriate to consider also the practicability of the other two extreme value 
asymptotic distributions. The types II and III extreme value distributions are 
three parametric and their (asymptotic) forms can be obtained if we initially 
write G(a"x) in equation 6.1 in place of G(x) and equate anton -t and nt, where t 
is a positive constant19. Readers may bypass this section on a first reading; 
however, the distributions are used for regional analysis in section 6.10. 

6.4.1 Type II extreme value distribution 

If we follow the notation in equations 6.2 and 6.3, the asymptotic type II extreme 

19 See Jenkinson (1955) for applications in hydrometeorology and Gumbel (1958a, b) 
for the theory. 



STATISTICAL TREATMENT OF FLOODS 225 

value distribution is given by 

lim[Pr{~n) ~ x}] = exp[ -{(u-e)/(x-e)}«] (6.37) 
N-->oo 

where Pr denotes probability of non-exceedance and ~n) is a random variable 
representing the maximum flood in any year, of which x is a particular value; 
x ~ e and u ~ e. This is also known as the Fn!chet distribution. 

From equations 6.3 and 6.37 

x = e + (u- e)exp(y/tX) (6.38) 

where y is the type I extreme value (Gumbel) reduced variate. Because of the 
positive exponential form (for tX > 0), x increases faster than for the Gumbel 
distribution, when y is increased. Therefore the distribution can be represented 
by a curve which is concave upwards on Gumbel probability paper. Now, if xis 
displaced bye, its natural logarithm will bear a linear relationship withy. If the 
assumption e = 0 holds, a straight line of x against y can be drawn on a special 
type of Gumbel probability paper that has a vertical logarithmic scale to 
represent this distribution in its two-parameter form; alternatively we may plot 
log(x) against y on ordinary Gumbel probability paper. 

6.4.2 Type Ill extreme value distribution 

If we use similar notation as in the type II distribution, the probability of non­
exceedance in this case is given by 

lim[Pr{~n) ~ x}] = exp[ -{(w-x)/(w-u)}«] (6.39) 
N-->oo 

where x ~ w; u ~ w. The relationship between x and y is of the form 

x = w- (w- u)exp(- yjtX) (6.40) 

This is a negative exponential type, and, therefore, it can be represented by a 
curve which is concave downwards on Gumbel probability paper. Note that this 
is of the same type as the Weibull function given by equation 3.60. 

6.4.3 General formula for extreme value distribution 

Corresponding to equations 6.39 and 6.40, Jenkinson (1969) suggested a single 
equation of the type 

x = u + (1/tX){1-exp( -ky)}jk (6.41) 

to represent the relationships between x and y of the three types of asymptotic 
extreme value distributions in which u, tX and k are parameters oflocation, scale 
and shape respectively. This is called the general extreme value (GEV) 
distribution. By substituting the series expansion of exp(- ky) in equation 6.41 
and by then dividing by k, it is seen that the special case k = 0 leads to the linear 
relationship for x against y which characterises the type I extreme value 
distribution as given by equation 6.4. The type II extreme value distribution is 
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applicable when k < 0, and, if k > 0, the type III distribution is signified; these 
two are represented by equations 6.38 and 6.40 respectively. 

In order to evaluate the T-year flood by this method, equation 6.41 is written 

x(T) = u + z(T)/tx 

where the value z(T) of the standardised variate Z is given by 

z(T) = {1-exp( -ky)}/k 

in which y and Tare related as shown by equation 6.14. 

(6.42) 

(6.43) 

The method of sextiles applied by Jenkinson (1969) gives approximate 
estimates of k, u and tx as follows. The infinite population of Z values, the 
probability distribution of which can be given as a function of k and y through 
equation 6.43, is considered to be arranged in increasing order and to be divided 
into six groups of equal size. Denote the mean of the variates in the ith sex tile 
group by 11-z. ;, where i = 1 represents the large sex tile, and the mean and 
standard deviation of these six mean values by 11-zand Uz respectively. Then, let 
the corresponding X values also be divided into six groups in the same way. This 
is done in a sample of data by ordering the items and by dividing them into six 
equal or nearly equal groups. Let /1-X,i denote the population mean of the 
variates in the ith sextile group; also, let the mean and standard deviation of 
these six values be 

6 

11- = L: 11-x .• /6 
i; 1 

and 

respectively. From equation 6.42, by taking expectations and by equating 
variances 

11- = u + 11-z/tx (6.44) 

and 

(6.45) 

The relationships between the shape parameters k (which is common to both 
X and Z populations), 11- z, uz and a shape ratio r- (/1- z 5-11-z ())/ (/1- z 1 -11-z 2) 

are given in table 6.5. (From the above definition, using ~quati~ns 6.43, 6.7 a~d 
6.9, 11- z = { 1 - r(l + k)} jk. However, to calculate u z and r, we need to use the 
inverse gamma function, explained in subsection 3.5.1.) 

The shape ratio r, which is the same for the Z and X populations from 
equation 6.42, is estimated from the sample-based statistics P.x.; by r 
= (P.x, 5 - P.x, 6 )/(P.x. 1 - P.x, 2 ). By interpolation, the corresponding estimates~. 
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Table 6.5 Shape parameter k, mean J1. z standard deviation u z, and shape ratio r of 
dimensionless Z population of GEV variates 

k Jl.z Uz r 

-0.5 1.54 2.85 0.08 
-0.4 1.22 2.24 0.11 
-0.3 0.99 1.83 0.16 
-0.2 0.82 1.55 0.23 
-0.1 0.69 1.35 0.32 

0 0.58 1.20 0.44 
0.1 0.49 1.09 0.59 
0.2 0.41 1.01 0.79 
0.3 0.34 0.95 1.05 
0.4 0.28 0.92 1.39 
0.5 0.23 0.89 1.83 
0.6 0.18 0.88 2.39 
0.7 0.13 0.87 3.13 

f1z and &z are found from table 6.5, after which equations 6.44 and 6.45 are used 
to calculate u and ~-

Example 6.5 Annual maxima from daily naturalised flows of the Derwent 
at Yorkshire Bridge for the period 1936 to 1971 are ranked in descending order 
in table 6.6. The sextile means f1x. 1 , f1x. 2 , f1x. 3 , f1x. 4 , f1x. 5 and f1x. 6 are also given 
in table 6.6. Estimate the parameters of a GEV distribution to be fitted to the 
data, and hence calculate x(60), x(40), x(20), x(10), x(5), x(3), x(2), x(l.5) and 
x(l.l). Plot these values and the given annual maxima on Gumbel probability 
paper. 

Table 6.6 

Ranked annual maxima ( x 106 m 3) 

8.68 4.27 3.49 3.09 2.58 2.30 
6.28 4.17 3.47 3.05 2.47 2.28 
5.59 3.89 3.44 2.86 2.46 2.15 
5.42 3.76 3.40 2.83 2.44 2.13 
4.54 3.59 3.20 2.63 2.40 2.12 
4.50 3.58 3.12 2.59 2.38 2.02 

Px, 1 Px, 2 Px, 3 Px, 4 Px, 5 Px, 6 

5.84 3.88 3.35 2.84 2.46 2.17 

A (A A )/(A A r = J.l.x, 5 - J.l.x, 6 J.l.x, 1 - J.l.x, 2) 

= 0.29/1.96 

= 0.15 
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From table 6.5 for r = 0.15, k = - 0.32. The negative sign of k shows that the 
type II extreme value distribution is applicable; also, ft. = 1.04lnd &. =- 1.91. 
The estimated mean and standard deviation of the sextile means are respectively 
fl = 3.42 and & = 1.22. From equation 6.45, & = &./& = 1.91/1.22 = 1/0.64, 
and, from equation 6.44, u = 3.42-0.64 x 1.04 = 2.75. The x(T) values are 
obtained as shown in table 6.7 from equations 6.14 and 6.41. 

Table 6.7 

-10 
M 

E 9 
'b 
..! 8 

E 6 

" -~ 5 .. 
E 4 
-;;; 

" § 3 

Computations of x( T) for type II extreme value distribution 

T y exp( -ky) z(T) x(T) 

60 4.09 3.70 8.43 8.14 
40 3.68 3.24 7.01 7.24 
30 3.38 2.95 6.10 6.66 
20 2.97 2.59 4.96 5.92 
10 2.25 2.05 3.30 4.86 
5 1.50 1.62 1.93 3.98 
3 0.90 1.33 1.05 3.42 
2 0.37 1.12 0.39 3.00 
1.5 -0.09 0.97 -0.09 2.69 
1.1 -0.87 0.76 -0.76 2.26 

• Plotted by using Gringorten plotting position 

<( 2 • • • 
1.1 2 3 4 5 

A eturn period T 

Figure 6.3 GEV distribution fitted by Jenkinson's sextile method to annual maxima 
from daily flows in Derwent at Yorkshire Bridge for the period 1936 to 1971 

The annual maxima from table 6.6 are plotted in figure 6.3 by using the 
Gringorten plotting position, and the values in table 6.7 give the smooth curve. 

The ML equations for the GEV distribution are, of course, more complicated 
than those for the Gumbel distribution20• 

20 See Jenkinson (1969, pp. 199-205) and the Natural Environmental Research Council 
(1975, vol. 1, pp. 96-7). 
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6.5 Lognormal distribution 

The general theory of the lognormal distribution, which is introduced in chapter 
3, and its method of application to extreme values are given herein21 . 

6.5.1 Theoretical considerations 

Chow (1954) considered that the occurrence of a flood flow denoted, say, by the 
random variable X is the result of the joint multiplicative action of a vast 
number of meteorological and geographical effects, X 1 , X 2 , X 3 , •.• , X,. That 
is, X= X 1 X 2 X 3 ..• X,.lf r is infinitely large, log X is the sum of an infinite 
number of independent variates, and, accordingly, it is normally distributed by 
the central limit theorem (see section 3.1). The less satisfactory aspects of this 
approach are that some of the effects are interdependent (such as mean rainfall 
and elevation or storm intensity and catchment size, shape and orientation), and 
there could be great difficulty in identifying them. Because of dependency, the 
process should strictly be modelled by a multivariate distribution. Furthermore, 
in practice it is likely 'that the interactions of the contributory effects are of 
various types, such as additive, multiplicative, exponential and so on. So, the 
lognormal distribution can only provide an approximation to real world 
situations just as when other theoretical distributions are applied to flood flows. 

In general, let Y = ln(X- e) be normally distributed with the parameters Jl r 
as mean and a y as standard deviation. This means that the random variable X of 
which an observed value given by 

X= exp(y)+e (6.46) 

is assumed to have a three-parameter lognormal distribution. It should be 
noted that the lognormal distribution is equally applicable when 10 (or any 
other number) is the base of the logarithms, which will only cause a change in 
scale22 • The probability density function for the Y population is 

f(y) = ay 1 (2n)- 1 i 2 exp{ -(Y-Jly)2/2a~} (6.47) 

The panmeters Jl yand a yare obtained by the method of moments (section 3.3) 
as follows. 

E{ exp( Y)} = 1: exp(y)f(y)dy 

= ay 1 (2n)- 112exp(Jlr+a~/2) 

21 Hazen (1914) and Horton (1914) originally applied the distribution to flood flows, 
and, subsequently, Chow (1954) derived the underlying theory; Kalinske (1946), 
Matalas (1967) and Sangal and Biswas (1970) have also made notable contributions. For 
an extensive treatment, see Aitchison and Brown (1957). 
22 The value y corresponds to z in equation 3.58; 1-l r and u r correspond to y and b 
respectively and parameter A. is redundant as noted in section 3.6.2. 
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x J:oo exp[ -{y-jly-u}}2 j2u}]dy 

the integral part of which is equal to the unit area enclosed by a normal 
probability density curve, defined functionally by the parameters Jl y+ u} and 
O'y. 

E{ exp( Y)} = exp(Jl y+ u}/2) 

From equations 6.46 (by taking expectations) and 6.48 

Jl = exp(Jl y+ u}/2) + e 

(6.48) 

(6.49) 

where E(X) = Jl is the mean of the X population. Because E(2 Y) = 2Jl rand 
var(2 Y) = 4u}, from equations 6.46 and 6.48 

(6.50) 

The variance u2 of the X population is equal to E(X2)- Jl 2• Hence, it follows 
from equations 6.49 and 6.50 that 

u2 = {exp(2Jly+ u})} {exp(u}) -1} (6.51) 

Also, from E(X- Jl)3 and by using equations 6.46, 6.49 and 6.51, it can be 
shown that the skewness coefficient y1 = u- 3 E{ (X- Jl)3 } of the X population 
and u y are related as follows. 

y1 = {exp(3u})- 3 exp(u})+2}/{exp(u})-1} 3 ' 2 (6.52) 

This formula is used to estimate u ywhen fitting a three-parameter lognormal 
distribution 23• 

Equation 6.49 can be easily adapted for the two-parameter lognormal 
distribution in which e = o. Also, in this case if V = u I Jl, the coefficient of 
variation of the X population, it can be shown that (Aitchinson and Brown, 
1957) 

(6.53) 

One advantage that the lognormal distribution has over the Gumbel distri­
bution is that it is more flexible for curve fitting because the skewness is not 
fixed. 

For the three-parameter case in which y = ln(x- e), 

x(T) = exp(JLy+ zJ.uy) + e (6.54) 

23 The formula is used in chapter 4; see also Matalas (1967). Sangal and Biswas (1970) 
suggested an alternative fitting procedure using the median C of the X population; if IX 

= e/J.t, p = C/J.t and v = u/J.t, 
21X3(1- P> + 1X2(V2 + p2 - 5 +4P) +21X(2- PV 2 - p- P2) + P2 V2 -1 + P2 = o 
This is solved iteratively to find IX and hence e; then we proceed as in the two-parameter 
case. However, Burges et al. (1975) have found from Monte Carlo experiments that the 
estimator using the median has a larger variance and bias than that based on skewness ')' 1 

as given by equation 6.52 except perhaps when y1 < 0.51. 
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The ML method of estimation is far more complicated; Giesbrecht and 
Kempthorne (1976) discuss the approach and cite earlier work. 

6.5.2 Probability paper 

Normal probability paper was devised by Hazen (1914) for determining 
probabilities of reservoir yield. Subsequently, Whipple (1916) used logarithmic 
probability paper to test, for example, the distributions of microscopic 
organisms in water. The normal density function for a variate X is given by 
equation 3.3, and equation 3.4 represents the standard normal density function 
f(z), where z = (x- Jl)/a. 

If x is normally distributed, a graph of x against z will give on arithmetic 
graph paper a straight line with intercept J1 and gradient a. Each x value is 
associated with a z value which has a fixed probability of non-exceedance. It is 
more useful, on the other hand, to plot values of the integral 

<l>(z) = (2n) - 112 f oo { exp(- t2 /2)} dt (6.55) 

on the horizontal scale to represent corresponding z values24. This is given as a 
percentage on some types of normal probability paper in which the top and 
bottom scales are in units of { 1 - <l>(z)} 100 and <l>(z) 100 respectively. As noted 
in section 6.1, the return period T= 1/{1-<l>(z)}. 

Lognormal probability paper is produced in the same way except that the 
vertical scale is logarithmic so that the data need not be transformed to 
logarithms. If the lognormal law holds, it is expected that a long sequence of 
annual maxima will give a straight-line plot with a gradient of a Y• and an 
intercept of J1 y on the vertical representing <l>(z) = 0.5, if the vertical scale is 
transformed to logarithms and the horizontal scale is converted from <l>(z) to z. 

Example 6.6 Ranked annual maximum daily flows in the Severn at 
Bewdley for the period 1940 to 1968 are given below. In order to see the fit of a 
two-parameter lognormal distribution, plot the values on lognormal prob­
ability paper. Fit a straight line by the method of moments, and estimate x(lO). 

Ranked annual maximum daily flows (m3 s - 1) 

793 
585 
451 

768 
546 
445 

747 
529 
422 

747 
528 
419 

711 
500 
381 

683 
469 
347 

660 
465 
316 

648 
465 
311 

624 
465 
300 

585 
455 

The annual maxima are plotted in figure 6.4 by using the Weibull plotting 
position T = (N + 1)/m; the Blom plotting position has been recommended by 

24 See the commonly available tables of the normal distribution or the second and third 
columns of table 6.9. 
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Figure 6.4 Two-parameter lognormal distribution fitted to annual maxima from 
daily mean flows in Severn at Bewdley for the period 1940 to 1968: broken lines denote 

95% confidence limits 

Gringorten (1963) for the normal (or lognormal) distribution. 
The estimated mean and the standard deviation of the sample are x = 529.8 

and s = 144.5 respectively. From equations 6.49 (in which~ = 0) and 6.51, the 
estimated mean y and the standard deviation sy of the Y population are y 
= ln(x)-s;;2 = 6.237 and sY = [ln{(s/.X)2 + 1} ]1 12 = 0.2679 respectively. 
From tables of the normal distribution, <1>(2.054) = 0.98 and <1>(2.326) = 0.99. 
Therefore, x(50), which corresponds to <l>(z) = 0.98, is equal to exp(6.237 
+2.054 x 0.2679) = 886, andx(l.OI), for which <l>(z) = O.ot, equals exp(6.237 
- 2.326 x 0.2679) = 274. These two values correspond to probabilities of non­
exceedance equal to 98% and 1 % respectively and define the straight line in 
figure 6.4. The 10-year flood x(lO) corresponds, of course, to a probability (1 
- 111 0) x 100 = 90% of non-exceedance. Its magnitude is 720 m s- 1 from the 
straight-line plot, or it is theoretically equal to exp(6.237 + 1.282 x 0.2679) 
= 720.6. 

6.5.3 Frequency factors 

From equation 6.26 

K(1) = {x(J)/r-1}/V 

where V = u j ll· For the two-parameter case in which y = ln(x), x( T) = exp(/ly 
+ z'ru y), where z'r is the value which a standard normal deviate exceeds with 
probability 1/T, as given by 

1 jT = (2n)- 112 1: exp(- t 2 /2)dt 
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and the variable Y is normal with a mean 11 y and a standard deviation (J y. 

Substituting from equations 6.49 (in which ~ = 0) and 6.51, we obtain 

K (T) = V- 1 ( { 1/( V 2 + 1)1i2 }exp[z'T{ln( V 2 + 1)Pi2 J -1) (6.57) 

This gives the frequency factor for the two-parameter lognormal distribution 
which is related as shown to the corresponding standard normal deviate z'T and 
the coefficient of variation V of the X population. A similar, but more 
complicated, expression for the frequency factor of the three-parameter 
lognormal distribution could be given by usingz'Tand the three parameterSJly• 
(Jy and ~. 

Example 6. 7 For the data given in example 6.6, estimate the K ( T) factor for 
T = 20 and hence x(20). Also, estimate the return period of the mean annual 
flood and the magnitude of the median annual flood. 

From equation 6.56 and tables of the standard normal distribution, ¢(1.6449) 
= 1 -1/20, that is, z~ 0 = 1.6449. The sample estimate of the coefficient of 
variation V = sjx = 144.5/529.8 = 0.273. Hence, from equation 6.57, K(20) 
= 1.829 and, from equation 6.26, x(20) = 530 + 1.829 x 144.5 = 794. This 
tallies closely with the value from figure 6.4 which has a 95% probability of non­
exceedance. For the mean annual flood, K ( T) = 0 in equation 6.57. Therefore, 

exp[ z'T{ln( V 2 + 1)} 112 ] = (V2 + 1)112 

Hence, z'T ={In( V2 + 1)} 112/2 = 0.1339. Because 1 -<11(0.1339) = 1/2.24 from 
tables, the return period of the mean annual flood is given by T = 2.24, 
corresponding to which x(2.24) = x = 529.8. This value has a probability of 
non-exceedance equal to (1 -1/2.24) x 100 = 55.3% on the horizontal scale of 
figure 6.4. For the median annual flood, T = 2 and z~ = 0.0 if the distribution is 
normal. Therefore, from equation 6.57, K(T)={l/(V2 +1) 1i2 -1}/V= 
-0.1292, and, from equation 6.26, x(2) = 529.8-0.1292 x 144.5 = 511, which 
tallies with the intercept on the 50% probability line in figure 6.4. 

6.5.4 Confidence limits 

For the two-parameter case the logarithm of the estimate of the T-year flood 
x( T) is related toy and sY, the estimated values of the parameters 11 y and (J Y• as 
follows from equation 6.54. 

ln{x(T)} = y +z'Tsy 

where z'T which is defined by equation 6.56 has a probability of exceedance 1 IT. 
Now cov(}i, sy) = 0, because y and sY are independent2 5. Also, var(Y) = (J}/ N 
and var((Jy) = a}j2N. These quantities are estimated by s;;N and s;j2N 
respectively. Hence, 

var[ln{x(T)}] = s~/N +z'r2s;j2N 

25 Shuster (1973) shows that the statistics y and s; are independent. 
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where N is the sample size. The 100(1 -a)% confidence limits of x(I), the 
population value of the T-year flood, is given by 

exp{ln { x( T)} ± Za/2 (var[ln { x( T)} ])1 12 } (6.58) 

where za12 is the value which is exceeded with probability rx/2 by a standard 
normal deviate26. 

Example 6.8 Using the data given in example 6.6, compute and plot the 95% 
confidence limits for T = 1.01, 1.05, 1.25, 2, 5, 20 and 100. 

Now sY = 0.2679 and N = 29; therefore, s;/N = 0.002475 and s;j2N 
= 0.001 237. The confidence limits are shown in table 6.8 and figure 6.4. 

Table 6.8 95% confidence limits with lognormal distribution fitted to annual 
maximum flows of Severn at Bewdley 

T zT- (var[ln {.X( T)}] )1 12 ln{x(T)} Upper Lower 
confidence limit confidence limit 

100 2.3263 0.0958 6.8599 1150 790 
20 1.6449 0.0763 6.6773 922 684 
5 0.8416 0.0579 6.4621 717 572 
2 0 0.0497 6.2367 563 464 
1.25 -0.8416 0.0579 6.0112 457 364 
1.05 -1.6449 0.0763 5.7960 382 283 
1.01 -2.3263 0.0958 5.6135 331 227 

Example 6.9 Fit a three-parameter lognormal distribution to the data given 
in example 6.6. Here, estimate x(50) and x(l.01). 

For the N( = 29) items of data from the X population, the coefficient of 
skewness y1 is estimated as follows, 

g1 = { N2~:X 3 - 3NL;x ~>2 + 2(~))3 } / N(N -1)(N- 2)s3 (6.59) 

where s=[{I;x2 -(I;x)2 /N}/(N-1)] 112 and L denotes summation of N 
values. Hence g1 = 0.2515, and, as obtained in example 6.5, x = 529.8 and s 
= 144.5 which are the sample estimates of J.l and a. From equation 6.52, sY, th~e 
estimate of aY, equals 0.0835 and from equations 6.51 and 6.49, y = 7.451 and~ 
= -1212, which are the estimates of Jiy and ~ respectively. Hence, x(50) 
= exp(7.451 + 2.054 x 0.0835) -1212 = 845, and x(l.01) = exp(7.451- 2.326 
X 0.0835) -1198 = 220. 

Because g1 is small and~ is negative, it does not seem worthwhile to fit this 
distribution here. Under more favourable conditions the theoretical straight 
line passing through the two points such as x(5) and x(l.Ol) may be compared 
with the line representing the two-parameter distribution for visual goodness of 
fit with the plotted points. 

26 Bias in small samples may be corrected by using the tables of Student's t distribution 
instead. 
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6.5.5 Bias in skewness and Hazen's correction 

It should be noted that the estimator given by equation 6.59 is unbiased only if 
the population is normal which is not true in practice. Because g 1 is known to 
have a definite downward bias when calculated from a lognormal population, 
Hazen (1930) suggested the use of an empirical correction factor of 1 + 8.5 IN for 
the coefficient of skewness27 • Thus the revised estimator becomes 

g'1 = { N~:X3 - 3N(Lx) (Lx2 ) + 2(Lx)3 } (1 + 8.5/N)/N(N -1)(N -2)s3 

(6.60) 

Example 6.10 For the data given in example 6.6, fit a three-parameter 
lognormal distribution using Hazen's correction for skewness. Hence, estimate 
x(50) and x(l.01). 

From example 6.9, .X = 529.8, s = 144.5 and g'1 = (1 + 8.5/29) x 0.2511 
= 0.3252. From equations 6.52, 6.51 and 6.49 the following estimates of uy, Ji. y 

and~ are obtained: Sy = 0.1077, ji = 7.193 and e = -808. Hence, from equation 
6.54, x(50) = exp(7.193 + 2.054 x 0.1077)- 808 = 851 and x(l.01) = exp(7.193 
+ 2.326 X 0.1067)- 808 = 227 

6.5.6 Regional skewness 

On account of sampling errors in estimates of skewness, it has been suggested 
that an average value should be taken over a hydrologically homogeneous 
region. The drawback is that such a region could be difficult to define, and in 
practice boundaries are marked somewhat arbitrarily. Results show that 
estimates of skewness for stations within a region have high variability and poor 
correlation with physiographic and meteorologic factors. Furthermore, such 
estimates are biased when outliers ('surprisingly high values') are present. More 
about these aspects will be found in sections 6.10 and 6.11. 

State-averaged values of skewness for logarithmically transformed flood data 
from the United States range from 0.6 in the eastern states to -0.5 in Illinois28. 

The country has also been partitioned into 14 regions for this purpose. From 
flood records at 1351 selected stations, means of the skewness ofuntransformed 
data range from 3.0 in the south to 0.9 in the southwest and northeast29• In the 

27 Wallis eta/. (1974) have found from Monte Carlo studies that Hazen's correction 
gives an unbiased estimate over a small range such as 0.5 < y1 < 2 for the lognormal 
distribution. They also noted that the average bias factor in the estimated skewness is a 
function of the skewness and the distribution, and, subsequently, Bobee and Robitaille 
( 1975) proposed formulae for adjustment. Regardless of bias corrections a single 
estimate of the coefficient of skewness is subject to high sample fluctuations, but the 
absolute magnitude of the statistic does not exceed (N -2)/(N -1)112, as shown by 
Kirby (1974). 
28 See Hardison (1974). 
29 See Matalas et al. (1975). 
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United Kingdom, corresponding regional averages of skewness of flood data 
vary from 4.36 in the southeast to 1.04 in the northeast30. 

6.6 Pearson type III function applied to extreme values 

The Pearson type III function is explained and methods of estimating the 
parameters are given in sections 3.2 to 3.4. The function which was applied 
originally to flood flows by Foster (1924) has no rigorous analytical basis, but its 
usefulness for curve-fitting purposes has been demonstrated31 . 

6.6.1 Frequency factors 

As shown in subsection 3.2.2, the Pearson type III function is given by 

(6.61) 

where y, Jc and ~ are the three parameters. By using the transformation 

the standard gamma function 

f(z) = zY- 1exp(- z)r(y) 

(6.62) 

(6.63) 

is obtained. The integral of this, with finite upper limit u(T) and 0 ~ F(u) ~ 1, 

ru(T) 
F(u) = Jo zY- 1 exp( -z)dzr(y) (6.64) 

is extensively tabulated by Wilk et al. (1962). The T-year flood 

x(1) = ~ + u(1)Jc (6.65) 

is obtained after replacing z in equation 6.62 by u(1), the standard gamma 
variate, which is also given in table 3.3 for some values ofy and F(u) = 1-1/T. 
Then, substituting from equations 3.40 and 3.41 in equation 6.65, we obtain the 
following estimator by the method of moments. 

x(T) = x +s{u(T)g 1/2 -2/g} (6.66) 

where x, sand g 1 are the estimators of the mean, the standard deviation and the 
coefficient of skewness respectively of the X population. Equation 6.66 
corresponds to the general form of equation 6.26 and the frequency factors 
K ( T) = u ( T)y 1 /2- 2jy 1 are given in table 6.9 for some values of the probability 
F(u) of non-exceedance and the coefficient of skewness y1 . As noted from 
equation 3.39, y = 4jyf, and this links table 6.9 to table 3.3. For more 
comprehensive tables, reference should be made to Harter (1969). 

30 See the Natural Environmental Research Council (1975). 
31 As shown by the Natural Environmental Research Council (1975) and by others such 
as Majumdar and Sawhney (1965). 
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Exampl-e 6.11 Ranked annual maximum flows of the Derwent at 
Longbridge Weir for the period 1936 to 1962 are given below. Plot the data 
using the Hazen plotting position, given in table 6.1, on normal probability 
paper, and fit a curve to represent the Pearson type III function. Estimate x(10). 

Ranked annual maximumjlows (m3 s- 1) 

269 
124 
98 

258 
117 
95 

228 
115 
87 

180 
110 
85 

167 
109 

81 

144 
108 
77 

143 
106 
68 

143 
102 

142 
102 

126 
99 

The estimated mean and standard deviation are x = 129.00 and s = 51.84, 
and the skewness coefficient g1, estimated by equation 6.60, is equal to 2.056. 
The coefficient of skewness is aproximated to 2.0, and the frequency factors are 
found from table 6.9; calculations are given in table 6.10. 

Table 6.10 Pearson type III function fitted to flood flows in Derwent at Longbridge 

Return period T Probability of 
non-exceedance F(u) 

1.001 
1.01 
1.02 
1.05 
1.11 
1.25 
2.00 
5 

10 
20 
50 

100 

0.001 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.98 
0.99 

Freque~cy .X( T) 
factor K(T) 

-0.999 
-0.990 
-0.980 
-0.949 
-0.894 
-0.777 
-0.307 

0.609 
1.303 
1.996 
2.912 
3.605 

77.2 
77.7 
78.2 
79.8 
82.7 
88.7 

113 
161 
197 
232 
280 
316 

The plotted points and the theoretical curve are shown in figure 6.5. x(10) 
=196m3 s- 3• 

6.6.2 Two-parameter gamma function 

The gamma probability density function 

f(x) = x1 - 1 exp( -x/A.)/),.1 r(y), (6.67) 

which has been applied to flood flows, for instance, by Moran (1957) is a simpler 
version of the Pearson type III function given above with the location parameter 
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Figures 6.5 Pearson type III distribution fitted to annual maxima for daily flows in 
Derwent at Longbridge Weir for the period 1936 to 1962 

~ = 0. The parameters y and .A. may be estimated by the method of moments 
from the mean x and the standard deviation s if we use equation 3.35 and the 
first equation of equation 3.32. Hence,~= s2 jx andy= x 2 js2 • 

Obviously, this will not fit a given sequence of data better than the type III 
function wilL However, if goodness-of-fit tests show that neither is rejected, the 
two-parameter function may be used. 

Example 6.12 For the data given in example 6.11, estimate x(20) by using 
the gamma function given by equation 6.67. 

As shown above, ~ = 51.842 /129.00 = 20.83 and y = (129/51.84)2 = 6.192. 
For T = 20, the probability of non-exceedance is given by F(u) = 1 -1/20 
= 0.95 with reference to equation 6.64. From table 3.3, the standard gamma 
variate u( T) is 10.77 which is obtained by interpolation for y = 6.19. Hence, 
x(20) = u(T).A. = 10.77 x 20.83 = 224. 

6.6.3 Log Pearson type III function 

When the Pearson type III function is applied to the logarithms (to any base) of 
the flood flows, the distribution function is termed the log Pearson type III 
function. If x = eY, then from equation 6.66 

(6.68) 

where y, s} and gr denote the estimators of the mean, the standard devia-
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tion and the skewness of the Y population for which, by comparing equa­
tions 6.26 and 6.68, K(T) = u(T)gy/2-2/gy. When referring to table 6.9 for 
this frequency factor, if skewness is negative which is quite possible for 
logarithmically transformed flood flows, the following procedure should be 
adopted. Replace each pair of co-ordinates { Yy, F ( u)} by { I y y I, 1 - F ( u)}, and 
then change the sign; for example, if y y = -1.0, K (10) which corresponds to 
F(u) = 0.9 is obtained from the row for F(u) = 0.1 and is equal to 1.128 after 
changing the sign. The log Pearson type III distribution was recommended for 
general use by the American Water Resources Council32. 

Example 6.13 Plot the data given in example 6.11 on lognormal probability 
paper, using the Blom plotting position from table 6.1, and fit the log Pearson 
type III function. Estimate x(lO) by this method. 

y = 4.796, sy = 0.3495 and g~ = 1.0696, which is approximated to 1.0 and 
table 6.9 is referred to. The calculations are given in table 6.11. 

Table 6.11 Log Pearson type III function fitting to flood flows in Derwent at 
Long bridge 

Return period T 

1.001 
1.01 
1.02 
1.05 
1.11 
1.25 
2.00 
5 

10 
20 
50 

Probability of 
non-exceedance F(u) 

0.001 
0.01 
0.02 
0.05 
0.10 
0.20 
0.50 
0.80 
0.90 
0.95 
0.98 

Frequency 
function K ( T) 

-1.786 
-1.588 
-1.492 
-1.317 
-1.128 
-0.852 
-0.164 

0.758 
1.340 
1.877 
2.542 

x(T) 

65 
69 
72 
76 
82 
90 

114 
158 
193 
233 
294 

The plotted points and the theoretical curve are shown in figure 6.6 from 
which .X(lO) = 193m3 s - 1. 

Note that the log Pearson type III function has a lower limit exp(~y) when 
skewness is positive33. This is estimated by exp (.Y- 2sy/g~) through the method 
of moments. If y = wx, the limit becomes exp{(.Y -2sy/g~)ln(10)}. For the 
given data, the lower limit is 57. On the contrary, if skewness is negative, the log 
Pearson type III variates are bound by an equal upper limit. This necessitates 
careful consideration in application. 

32 See Benson (1968). This was originally suggested by L. R. Beard. Confidence limits 
for x( T) when the Pearson type III or log Pearson type III distributions are applicable 
involves a procedure suggested by Moran (1957) which is partly numerical. This is also 
given by Santos (1970) and by Condie (1977). 
33 See Gilroy (1972). 
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Figure 6.6 Log Pearson type III distribution fitted to annual maxima for daily flows in 
Derwent at Longbridge Weir for the period 1936 to 1962 

6.7 Discussion on frequency methods of flood estimation 

The distributions given in the preceding sections have been used extensively in 
the estimation of flood-flow probabilities. Although each of them has had 
support on theoretical or empirical grounds, it seems reasonable to think that no 
ordinary probability function can fully represent the complicated flood­
producing factors which change in time and space owing to natural causes or 
man's actions. Therefore, some degree of subjectivity is unavoidable, if we 
consider the present state of the art. Graphical techniques do indeed provide a 
convenient method of choosing between different distributions; however, long 
extrapolations may be unreliable even if good fits are obtained. 

Studies involving comparisons between probability distributions have been 
made recently. Firstly, six distributions were applied to records of length 40 to 
97 years from 10 selected stations by the work group on flow frequency methods 
appointed by the Hydrological Committee of the United States Water 
Resources Council34. These are the Gumbel, log Gumbel (that is, a two­
paramete~ type II extreme value distribution), two-parameter gamma, log 
Pearson type III, lognormal and lognormal modified by the Hazen method. 
Their recommendation was that the log Pearson type III distribution, of which 

34 See Benson ( 1968). 
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the lognormal distribution is a special case, should be used with the proviso that, 
if the data show evidence of a significant difference, the best-fitting distribution 
should be adopted. 

In order to assess the relative suitabilities of the distributions, an empirical 
goodness-of-fit test was used by the United States work group. They thought 
that more information could be obtained from such a procedure than through 
one of the statistical goodness-of-fit tests described in chapter 3 in which a single 
abnormal value could cause rejection It is interesting to recall that Gumbel 
(1943) too had expressed some dissatisfaction over the chi-squared test when 
applied to flood flows. In the particular method adopted by the United States 
team, a sequence of data was ranked, and the items were plotted at points, say, 
{x0 (T), T}, where D signifies the data, on log Gumbel probability paper by 
using the Weibull plotting position. Then, for each station and each of the return 
periods T = 2, 5, 10, 25 and 50, the absolute differences between interpolated 
values on the broken straight lines joining the plotted points and the theoretical 
values i(T) for each function were calculated. These differences were then 
reduced to dimensionless units by dividing by the interpolated values x0 ( T). 
The criterion on which the log Pearson type III function was chosen is the 
average of these differences. 

One of the criticisms levelled against the American report is that it does not 
show how to deal with samples containing outliers (surprisingly high values)35 . 

The question of whether to include such discordant values with the rest of the 
sample data has been recurring over the part 100 years or more in studies on 
astronomy and other natural phenomena; many publications on the subject are 
found in the journal Technometrics. However, an engineer who has to face up to 
such a situation could benefit perhaps more from personal judgement than by 
using a complicated statistical fuction as formulated, for example, by Grubbs 
(1950). In this, associated rainfall data and the physical reasons for any 
extraordinary event ought to be examined. The subjective nature of decision 
making, implied by the word surprising, is stressed by Collett and Lewis (1976) 
who also point out the relevance of presentation, scale and pattern of the data in 
perceiving outliers; however, if an objective statistical criterion is used, the word 
discordant should be used in place of the word surprising. Anscombe (1960) 
compares a rejection rule to a domestic fire insurance policy, the choice of which 
depends on the answers to such questions as the following. 

(1) What is the premium? 
(2) How much protection does the policy give in the event of fire? 
(3) How much danger really is there of a fire? 

The answer to the last question will be as obvious to the prudent hydrologist 
as to the householder who is aware that many homes are destroyed by fire. 

In the extensive report by the Natural Environmental Research Council 

B Iflow flows are being examined, an outlier is, on the other hand, a surprisingly low 
value. 
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(1975), the empirical distributions of 35 annual maximum flow sequences from 
the United Kingdom and Ireland, selected on a reliability basis were fitted with 
each of 7 theoretical functions. These are the Gumbel, GEV, gamma, log 
gamma, Pearson type III, log Pearson type III and lognormal distributions. The 
record lengths ranged from 31 years to 88 years in the United Kingdom 
catchments; the maximum and minimum lengths of the Irish records are 44 
years and 23 years respectively. Chi-squared and Kolmogorov-Smirnov 
goodness-of-fit tests and three indices based on probability plots, in which the 
standardised measure is similar to that adopted by the American group except 
that the divisor is the mean of the annual maxima from the record instead of the 
x0 (T) values which are dependent on the plotting position. Not surprisingly, 
the three-parameter distributions such as the log Pearson type III and the GEV 
functions were found to fit the data better than the two-parameter functions. 
The Natural Environmental Research Council (1975) chose the type II extreme 
value function for extrapolation on a regional and national basis. It was also 
found, from several preliminary statistical tests carried out, that there is 
persistence in 2 and trend in 6 of the chosen 28 United Kingdom records, 
although these are not allowed for in the formulation of the theoretical 
functions. Such departures from ideal conditions have been encountered in 
applications elsewhere, and the imposed limitations should be borne in mind. 

The main shortcomings in the annual maximum series method of flood 
estimation can be summarised as follows. Firstly, the true probability distri­
bution, if it exists, is obscured owing to sampling errors, and, therefore, 
extrapolation should be treated with caution. When using graphical techniques 
a suitable choice of plotting position is desirable if it results in minimum bias. 
However, this criterion is based on repeated sampling from a hypothetical 
population, whereas in practical situations only a single sample is available. The 
point is that distortions at high return periods arising from an incorrect plotting 
position may be totally swamped by errors caused by an inappropriate 
probability model. It seems, therefore, that unwarranted emphasis can be given 
to the choice of a plotting position. Secondly, estimates of parameters are also 
subject to errors. The method of moments is generally affected by sampling 
errors in the estimates of moments. Moran (1957), amongst others, advocated 
the ML method of estimation. However, the importance associated with the ML 
method may not be justifiable when the assumptions on which the probability 
model are based are themselves incorrect. 

One possible alternative is to use bayesian decision theory as explained in 
chapter 9. An example is given by Davis et al. (1972) for flood control on the 
Rillito Creek in Arizona; here, the decision variable is the height of dikes to be 
constructed. Results are, however, highly dependent on the cost or benefit 
function used and are also based on this assumed distribution 36. Other possible 
solutions to the problem are described in section 6.12. 

36 The economic effect of floods, flood protection works and insurance are discussed by 
Brown ( 1972). 
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6.8 Binomial, Poisson and multinomial distributions 

Another type of question which a practising engineer would ask concerns the 
probabilities of occurrence of floods of very high return periods within an 
economic life span of, say, a spillway dam. This is required in evaluating the risks 
involved. The answer could be given without specifying the probability 
distribution of the flood events and the values of the parameters, but, of course, 
the flood magnitude associated with the given return period is dependent on this 
distribution; it means that errors in estimating the true return period of a high 
flood magnitude will affect the value of risk. 

The binomial distribution has been used for this purpose37• The Poisson and 
multinomial distributions are also applicable; the first is used as an approxi­
mation to the binomial and a joint probability, when two or more exceedance 
levels are considered, is calculated from the second. 

6.8.1 Binomial distribution 

The values in a serially independent annual maximum series could be thought of 
as either an exceedance (success) or a non-exceedance (failure) of a fixed value 
with probabilities of occurrence equal top and 1 - p respectively. This two-sided 
Bernoulli random variable, which was formally described by James Bernoulli in 
the days when probability theory was mainly applied to games of chance, leads 
to the binomial probability distribution 

B(M =miN, p) = (~)pm(l-p)N-m (6.69) 

of M successes in N independent identically distributed Bernoulli trials. The 
theory is derived in the following example. 

Example 6.14 Calculate the probability of having two 10-year annual 
maximum flood events, in a 5-year period, assuming that the events are serially 
independent. 

Let x(10) denote the flood magnitude which has a return period of 10 years. 
The joint probability of having two 10-year flood events, each of which is equal 
to or greater than x(10), with a probability of occurrence p( = 0.1), and three 
flood events each of which is less than x(10) in magnitude, with probability of 
occurrence 1-pis given by p2 (1- p)3 for an independent sequence. The five 
flood events can be arranged in 5! different ways, but the two 10-year flood 
events are classed together because there is no need to identify them 
individually; the other three are similarly included together in a separate class. 
Therefore, the total number of different arrangements of the two types of flood 
events is 5!/2! 3! = 10. (If P1 denotes p and P2 denotes 1 - p, the 10 different 
sequences could be denoted by P1 P1 P2P2P2, P1 P2P1 P2P2 , P1 P2P2P1 P2 , 

PtPzP2P2Pt, PzPtPtP2P2, PzPtPzPtPz, P2PtP2P2Pt, P2P2PtPtP2, 

37 See, for example, Markowitz (1971). 
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P2P2P1P2P1 and P2P2P2P1P1.) Hence, the required probability equals 

G )p2 (1 - p)3 = 10 X 0.1 2 X 0.93 = 0.0729. 

6.8.2 Poisson distribution 

Under certain conditions the binomial can be approximated by the Poisson 
distribution. If p.= ajN (for example, if p = 0.01 which signifies a 100-year 
flood and N = 40, then a = 0.4), equation 6.66 can be written in the following 
form. 

B(M =mIN, p) = (:)(ajN)m(l-ajN)N-m 

= N(N -1)(N -2) ... (N -m+ 1)(Nmm!)- 1am 

X (1- ajN)N (1- ajN)-m 

If m and a are fixed, 

lim{N(N -1)(N -2) ... (N -m+ 1)N-m} = 1 
N-+oo 

and 

lim{(1-a/N)-m} = 1 
N-+oo 

From a series expansion, 

ln{1/(1-t)} = -ln(1-t) 

= t + t 2 /2 + t 3 /3 + t4 /4 + ... 
Now, if b = (1-ajN)N, 

ln(b) = N ln(1- ajN) 

= -a-a2 j2N -a3 j3N 2 ••• 

Therefore, 

lim(l-ajN)N = e-a 
N-+oo 

Hence, for large N, the binomial is approximated by the Poisson probability 
distribution 

(6.70) 

and this is justifiable if p is small, say, not more than 0.10, and N is large. 
Example 6.15 The probability of at least one 100-year flood in a 40-year 

period is 1-P(M = Oia) = 1- (40 x 0.01)0e-40xO.OljO! = 0.33. Note that the 
probability of no 100-year floods is subtracted from unity. 
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6.8.3 Multinomial distribution 

The probability of having, in a sequence of N annual maxima, M 1, M 2 , M 3 , ... , 

M, events with probabilities of occurrence equal to p1 , p2 , p3 , ... , p, respectively 
is given by the multinomial distribution, 

M(M 1 = m1 , M 2 = m2 , .. • , M, = m,IN,p~> p2 , •• • , p,) 

= /JT'P'£2 ... P~'(1-p! -p2 ... -p,)N-m,-m:; ... -m, 

xN!/m1!m2 ! ... m,!(N-m1-m2 - ... -m,)! (6.71) 

where 

L M;:::;N 
i = 1 

The set of probabilities P;, i = 1, 2, 3, ... , r, can be expressed in terms of the 
return intervals I;, i = 1, 2, 3, ... , r, as follows. 

P1 = 1/T1 

P2 = 1/T2 -1/T1 

P3 = 1/T3 - 1/T2 

p, = 1/T, -1/T,-1 

The theory can be easily derived using the same type of arguments as in example 
6.14, and it is obvious that the binomial is a special case of the multinomial 
distribution. 

Example 6.16 Calculate the probability of having, in a 5-year sequence of 
annual maxima, four 5-year floods of which two are 10-year floods. N = 5; m1 

= 2; m2 = 2; p 1 = 0.1; p 2 = 0.2-0.1 = 0.1. Hence, the required probability is 
0.1 2 X 0.1 2 X 0.8 1 X 5!/2!2! 1! = 0.0024. 

6.8.4 Limitations 

It is important to note that these calculations are based on the assumption that 
the flood events are serially independent and identically distributed. Moreover, 
as in the choice of the basic extreme value models, the method ignores 
alterations in natural and environmental factors. On account of man's actions 
such as urbanisation, channel improvements, construction of dams and 
irrigation works there will be further changes in the underlying distributions38. 

Hitherto, only annual maximum series were considered. As already men­
tioned in section 6.7, these have limitations which casts doubts on extrapolated 
values. In order to increase the information found in high flows from a short 
sample of data, the peaks-over-threshold method, in which estimates are based 
on more than one value per year, is used. 

38 See, for example, Kazmann (1972, pp. 615, 616). 
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6.9 Peaks-over-threshold method 

The peaks-over-threshold (POT) method concerns the distribution of the 
number and magnitude of peak flows that exceed a threshold such as xb in figure 
6. 7 which shows part of a continuous record of flow in a river. Such peak flows 
are said to constitute a partial duration series. The threshold level xb may be 
raised or lowered so as to involve a desirable number of peaks per year; this 
chosen number may be in the range from 3 to 5. 

x, 

t 
~ ~+---~~~~~-1~~----~~~------_,xb 
.2 
u. 

Figure 6. 7 Peaks over a threshold 

In order to make the analysis tractable, it is assumed that the individual peaks 
x 1 , x 2 , x3 , x4 , •.. represent independent hydrometeorological events or, in 
other words, that these are not serially correlated. This means that peaks such as 
x2 and x~ which do not have definite ascensions and recessions and which seem 
to be associated with x 2 and x 4 respectively are not considered. In practice, the 
selection has to be done empirically39. 

Also of interest is the distribution of the interevent (also called waiting or 
recurrence) times r;, i = 1, 2, 3, ... , between successive exceedances. The joint 
distribution of the r; values specify a stochastic process which is found by the 
times of peak flows exceeding xb. The term renewal process is applicable if the T; 

values are independent and identically distributed. This cannot, of course, be 
strictly true because of seasonal variations. For example, the times between 
summer thunderstorms are different from those between cyclonic rains in 
winter. Moreover, if snow is contributory, the times of melting may be 
distributed differently. 

If on average there are a peaks per year which exceed the threshold, then the 
number M of POT events per year is a random variable which has the Poisson 
probability distribution 

39 For example, the Natural Environmental Research Council (1975, vol. 1, p. 46) 
suggests that 'peaks should be separated in time by 3 times the time to peak and that the 
flow should decrease between peaks to two-thirds of the first peak'. 
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(6.72) 

where m is a particular value which M takes. 
Also, the probability of exceedance of the r; values has the exponential 

distribution 

(6.73) 

in which the parameter 1/m is the mean of the r; values, as shown below. 
The magnitudes X of the peaks which exceed xb are also assumed to be 

exponentially distributed so that the probability of exceedance of a particular 
value x(T) which has a recurrence interval ofT years is given by 

Pr{ X > x(T) J X > xb} = e -.l.{x(TJ -xb} 

where A. is a constant and the vertical line inside the brackets denotes conditional 
to. Because the probability of exceedance is the reciprocal of the return interval, 
in the POT analysis the T-year flood is that which on average is exceeded once in 
aT events compared with once in T events in the annual maximum series. It 
follows that 

and 
x(T) = xb+ {ln(a)+ln(T)}/A. 

(6.74) 

(6.75) 

For a given set of exceedances X (I)• x(2)• x(3)• •.• , X (N)• which are serially 
independent and ranked in ascending order so that X< 1> is the lowest, 

Pr(x0 ) < x) = 1-e-(x-x,)/(l/NA.) (6.76) 

The expectation of a variate with an exponential distribution F (x) = 1 - e- '-xis 
given by 

E (X) = 170 xA.e-;.x dx 

= [ -xe-·<x]; +leN e-hdx, 

integrating by parts. 
Because lim(xe-;.x) = 0, for the same reasons given after equation 3.30, 

E(X) = 1/ A.. Correspondingly, it follows from equation 6.74 that 

Jl=Xb+1/A 

where Jl is the mean of the X<iJ population with the sample estimator 

N 

.X= L x<il/N 
i = 1 

(6.77) 

Also, from equation 6.76, the expected value of the lowest item is given by 

(6.78) 
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Now .X and x0 > are sufficient estimators of J1 and xb respectively, where 
according to the definition by Fisher (1922) an estimator t, say, is sufficient for a 
parameter(), say, if the distribution of a sample, given t, does not depend on e. 
Therefore, the following estimator for A. is obtained from equation 6.77. 

(6.79) 

By taking expectations and by substituting from equations 6.77 and 6.78 

E(~') = A.N j(N -1) 

Then the following unbiased estimator for A. is obtained by substituting the last 
result in equation 6.79 for E(i'). 

~'= {(N -1)/N}/(.X -x< 1>) (6.80) 

Again, for xb, the following unbiased estimator is obtained from equation 6. 78. 

(6.81) 

The POT method is useful for estimating the magnitudes and frequency of 
events which have low return periods T. Its main importance is in the design of 
cofferdams or culverts. However, for T > 10, Langbein (1949) has shown that 
x(T) calculated from the POT method differs very little from that calculated 
from an annual maximum series. 

Example 6.17 Peak daily flows in the River Derwent at Yorkshire Bridge 
which exceed 19m3 s -l are tabulated below for the period 1933 to 1937. 

Daily flows (m3 s- 1) 

1933 1936 
Feb. 1 21.16 Mar. 8 20.46 
Mar. 3 30.71 Mar. 9 20.51 
Mar. 4 28.39 Sep. 7 28.21 
Nov. 15 19.06 Nov. 9 20.12 

1934 
Nov. 12 20.23 
Nov. 15 22.17 

None Nov. 17 19.92 
Dec. 14 26.73 

1935 
Feb. 15 36.62 1937 

Feb. 16 41.04 Jan. 6 29.55 

Oct. 9 28.54 
Oct. 27 35.09 

Feb. 14 20.65 
Mar. 17 22.88 

Oct. 28 30.65 
Oct. 29 23.11 
Oct. 30 23.39 

Mar. 18 33.15 
Mar. 19 24.87 
Dec. 2 32.35 

Oct. 31 24.21 Dec. 22 29.17 

Nov. 4 22.96 
Nov. 17 27.87 
Nov. 20 21.37 
Nov. 21 21.99 
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Using a suitable threshold value, estimate the following. 

(1) The probability of at least two exceedances of the threshold in 1 year. 
(2) The probability of having a 3-year period without any exceedances. 
(3) The magnitude of a 5-year flood. 

(This sample is too short for practical purposes and is only used here merely to 
explain the procedure.) The following POT values are taken as serially 
independent values with an average of three per year; 21.16, 30.71, 41.04, 28.54, 
35.09, 22.96, 27.87, 21.99, 28.21, 22.17, 26.73, 29.55, 33.15, 32.35, 29.17. The 
lowest value x0 > = 21.16 and the mean .X = 28.71. 

(1) Using equation 6.72, a = 3, P(M = 0 13) = 3°e-3 /0! = 0.0498 and P(M 
= 113) = 31e- 3 /1! = 0.1494. The probability of at least two exceedances per 
year is 1- P(M = 0 13)- P(M = 113) = 0.8008 which tallies with the visual 
evidence of four cases out of five. 

(2) By using equation 6.73, P(ri > 3) = exp(- 3 x 3) = 0.0001, which is an 
exceedingly low probability of having a 3-year period without an exceedance. 

(3) From equations 6.80, 6.81 and 6.75, ~ = (14/15)/(28.71-21.16) 
= 0.1236, xb = x(l) -1/ N~ = 20.62 and x(5) = 20.62 + 8.09ln(3 X 5) = 42.53. 

6.10 Regional flood frequency analysis 

The limitations in single-site data are, in summary, that a sequence may be too 
short to represent the population of flood events adequately, even without 
considering possible non-stationarities. In addition, the critical values in the 
records may be subject to serious errors of measurement. On account of such 
deficiencies, hydrologists have resorted to regionalisation, that is, to combining 
the information in several records from a homogeneous zone or region. This 
would hopefully lead to a more realistic estimation of floods of given return 
periods. 

Initially, there is the problem of defining the boundary of such a region. One 
way to demarcate a region is so that the hydrologic or response characteristics of 
the catchment areas within it are comparable. These may be assessed through 
unit hydrographs, lag times and flow duration curves. Alternatively, physical 
and climatological characteristics may be the overriding criteria in the choice. 
Finally, and this is probably the easiest method, regions could be defined 
through existing geographical boundaries; also, areas of similar soils or geology 
and land use maps have been employed particularly in the United States40• 

There are two main objectives in regional analysis. The first is to extrapolate 
flood estimates to sites with scanty or no data. In regional studies a multiple 
regression formula of the type 

x(T) = aBbCDd ... Kk 

40 See, for example, the numerous references in Schulz eta/. (1973). 
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is generally assumed for x( T) in which B, C, ... , K are the parameters or factors 
and b, c, d, ... , k are regression constants41 . Then a linear regression equation is 
obtained through a logarithmic transformation. Initially, a distribution such as 
the log Pearson type III is fitted to the observed flood data, separately for each 
station. From the station curves, estimated values x(T) are obtained for a 
particular value of T and are regressed by using a step-forward method, with 
catchment and other characteristics. These variables are tested in turn for 
significance before they are included in the equation. The procedure, at any step, 
is to select the independent variable which maximises the squared partial 
correlation coefficients, given the x( T) and the variables selected before42. 

In the report by the Natural Environmental Research Council (1975), the 
mean flood, which has a return period of2.33 years for the Gumbel distribution, 
is correlated to significant catchment characteristics. The parameters used are as 
follows: catchment area (km2 ); STMFRQ, the number of stream junctions, 
shown on a 1:25 000 map divided by A; S1085, stream gradient which is 
calculated from 10% to 85% of the stream length from the gauge; RSMD, net 1-
day rainfall (which is rainfall less a weighted mean soil moisture deficit) with a 5-
year return period; LAKE, proportion of catchment draining through a lake; 
SOIL, an index of catchment soils in the range of 0.15 to 0.50 calculated from 
0.15S 1 +0.3S 2 +0.4S 3 +0.45S4 +0.5S 5 , where S1 , S2 , S3 , S4 and S5 are the 
fractions of the catchment area covered by five soil types in increasing order of 
perviousness; URBAN, the urban fraction of the catchment43 . 

For example, the regression equation for the central region of the United 
Kingdom is 

x(2.33) = 0.0213(AREA)0 ·94 (STMFRQj0 ·27 (S1085)0 · 16 

(6.82) 

At the same time a dimensionless flood sequence is obtained for a region after 
dividing the observed values from the various catchments by the estimated 
mean for the particular catchment. In this way floods from different catchments 
can be compared directly; originally, engineers used catchment area as a divisor. 
A region curve is then drawn from the ordered set of data on normal and 
Gumbel probability paper by using appropriate plotting positions. These curves 
are similar to figures 6.2 or 6.5 except that the vertical axes are marked in units of 
x(T)/x(2.33), in which x(2.33) is the (Gumbel) mean annual maximum flood. It 
is noted from the report by the Natural Environmental Research Council 

41 For example, Benson (1962a) used the following parameters for the northeastern 
United States: N-year annual peak discharge; drainage area; main-channel slope; 
percentage of surface storage area plus 0.5 %; N-year rainfall intensity; average January 
degrees below freezing; orographic factor. 
42 Standard methods of regression are explained for example by Fryer (1966). Most 
computers have routines for this type of work. 
43 Regional studies have also been made for the United Kingdom by Nash and Shaw 
( 1966) and by Cole ( 1966). 
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(1975) that the type II extreme value distribution seems to provide the best fit for 
distributions of flood events on a regional basis. Accordingly, parameters of this 
distribution are calculated for ten regions in the United Kingdom and one for 
the whole oflreland. The limits of the regional values of parameters in equation 
6.41 are 0 ~ k ~ -0.325, 0.77 ~ u ~ 0.87 and 0.18 ~a~ 0.28 with mean 
values of - 0.2, 0.8 and 0.24 respectively. By using the second approximation of 
equation 6.15, the national (United Kingdom) equation suggested by the 
Natural Environmental Research Council (1975) is 

x(T)/x(2.33) = - o.4 + I.20T0 ·2 (6.83) 

It should be noted that the presence of an outlier, say, xmax' which is an 
extremely high flow such as a 1000-year flood within a short sample, will give an 
upward bias to the mean flow as given by equation 6.82 or by a similar regression 
equation. Now, the median flood flow Xmed is known to be a more stable statistic 
than the mean x(2.33); the Natural Environmental Research Council (1975) 
found that x(2.33)/xmed ~ 1.07 for United Kingdom data and recommended 
that, if in a particular case Xmax > 3Xmed• x(2.33) should be equated to 1.07xmed· 

Regionalisation is sometimes used to extend floods temporarily in order to 
estimate the frequency of floods of high return periods. According to Kritsky 
and Menkel (1969), hydraulic structures in the Soviet Union are designed to 
pass maximum floods which occur on average once in 1000 or 10 000 years. This 
has been achieved by combining flood records from the Volga, Dneiper and 
other river basins. However, because of spatial correlation between flood events, 
the return period of a critical flood event could be much less than, say, the 
hypothetical 1000-year period obtained by combining 20 records of length 50 
years. The influence of correlation, in this so-called station-year method, is 
examined by Carrigan (1971). 

Finally, if we return to the general regional approach, its main shortcoming is 
that the highest floods within a region are often caused by a single meteorologi­
cal event. The same could also apply to the second, third and other critical 
floods. When this happens there seems to be little virtue in using regionalisation 
because we cannot obtain more information than in a single-station analysis. At 
the other extreme, if the crucial floods are caused by local convective 
precipitation, orographic effects or the melting of snow rather than through 
cyclonic systems which are often widespread, the standard error in the 
regression may be too high, and the method is of doubtful value for spatial 
extrapolation, on account of significant differences between the flood­
producing characteristics of the individual catchments. 

6.11 Probable maximum precipitation 

The inadequacies in the frequency approach are discussed in previous sections. 
Even if long records are available, there is uncertainty regarding estimated 
values. For instance, regardless of the largest observed flow, it is inevitable that a 
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Figure 6.8 Annual maximum peak flows in Pecos near Shumla, Texas, for the period 
1900 to 1968: Gringorton plotting position is used; return periods of less than 1.3 years 
are not shown. Years in which the ten highest flows occurred are given. Note the flood 
which occurred on 28 June 1954 as shown at the top. Prior to October 1954, the gauging 

station was 13 miles downstream at Pecos, Texas 

much larger flood will occur in the future, and it is in the application to 
abnormally high flows that frequency methods are the least satisfactory. An 
example is shown in figure 6.8 which is a Gumbel plot from 67 years of annual 
maxima in the Pecos River near Shumla, Texas. The maximum flow in 1954 is an 
outlier which, if ignored and calculated on the basis of the other 66 items of data, 
has a return period of more than 1011 years. This is clearly a flood event which 
cannot be accounted for by conventional methods! Other examples from the 
United States are the floods in Virginia during August 1969 due to hurricane 
Camille, which were about ten times those recorded earlier, and this was 
followed by the catastrophic events in Rapid City, South Dakota. However, the 
largest flood damage, estimated at three billion dollars, was caused in June 1972 
by hurricane Agnes in the eastern United States during June 1972, and the 
greatest flooding elsewhere during recent decades occurred in Bangladesh 
during November 1970 as a result of a tropical cyclone44. 

Although such freak events are possible almost everywhere, it is rational to 
assume from a knowledge of physics that there is an upper limit to maximum 
floods, however impractical its definition might seem, in the same way that other 
natural phenomena have their own ends or bounds. To quote Horton (1936), 'A 

44 Information on other outliers in flood data from the United States is given by 
Hardison (1973). 
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small stream cannot produce a major Mississippi flood just as an ordinary 
barnyard fowl cannot lay an egg a yard in diameter: it would transcend nature's 
capabilities under the circumstances.' We could also add other impossible cases 
such as a man of age 200 years, a woman 10 feet tall and a snake 1 mile long. 

In this sense, the unbounded right tails of commonly postulated frequency 
functions for flood flows are not realistic. The question then arises what the 
upper limit should be, and this will be of particular interest in the design oflarge 
dams, the failure of which can have a serious effect on lives and property. In 
order to find a practical solution to the problem, hydrometeorologists have 
developed the technique of probable maximum precipitation (PMP). 

It is easy to imagine that, when observed storms are transposed from 
neighbouring catchments to an area above a particular observation site, extreme 
flood flows which exceed the magnitudes of observed events could occur at this 
site. Storm maximisation obtained by considering dew points, wind velocities, 
condensation of cloud particles and other criteria related to storm efficiency 
increases this effect. However, all the meteorological factors associated with 
maximum floods cannot be accounted for, because of the limitations in the 
knowledge of atmospheric processes and also because of the lack of data. 
Because of these shortcomings, the approach is subjective and it has aroused a 
great deal of controversy45 . Nevertheless, in the United States, design floods are 
based on the PMP method if the dam heights are greater than 60 feet, and a 
United States committee has considered the safety of large dams on this basis46 . 

Then, the unit hydrograph method is used to obtain the probable maximum 
flood from the PMP. The method is also followed in Australia. The following is 
an outline of the basic principles. 

Because the upper limit of high floods cannot be satisfactorily defined, no 
structure which is designed to cope with these extraordinary events could be 
absolutely safe. On the other hand, the design of, say, a spillway dam that can 
pass the flood caused by the highest possible precipitation is conceivable, if the 
flood is obtained by maximising all the factors simultaneously, but the cost of 
such a structure would be prohibitive. Besides, there is uncertainty regarding 
these 'maximum' factors. For engineering expediency, therefore, PMP has been 
defined as the magnitude of rainfall over a catchment area that would result in a 
flood flow of which there is 'virtually no risk of being exceeded'4 7 • There have 
also been other definitions, and a discussion on these is given by Alexander 
( 1965). In this context it is important to note here that in some areas the melting 
of snow is an important contributory factor. 

As for the term storm transposition used in hydrometeorology, with its area 
of extent and physical boundaries, a region of meteorological homogeneity is 
best regarded as one in which every catchment within it can have precipitation 
events with similar inflow wind movement and storm mechanisms but with 

45 See, for example, Gumbel (1958b), Yevjevich (1968) and Benson (1973). 
46 This is reported, for instance, by Gray ( 1974). 
47 See Myers (1969). 
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variations in the total moisture charge and frequency of occurrence. There is 
also another important point to bear in mind. This concerns the types of storms 
which we are justified in transposing. Whereas thunderstorms lend themselves 
easily to transposition with hardly any reservation regarding distance, hur­
ricanes are effective only in certain coastal areas48• Also, there are limits to 
transposition in mountainous zones, and storms observed in one catchment 
cannot be considered to occur in another if the difference in elevation is 
excessive (say, more that about 1500 feet). By the same token, the shape and 
orientation of rainfall patterns associated with frontal rains should not be 
altered. Therefore, it follows that a hydrometeorological analysis of this type 
requires careful judgement. 

When faced with inadequate data, PMP analysts estimate the moisture of a 
storm from surface dew points. This approximation is reasonable for heavy 
storms when the column of air is saturated and the vertical temperature gradient 
is equivalent to the saturated pseudoadiabatic lapse rate which is a decrease of 
about 0.5 oc per 100m above the surface. The importance of the dew point stems 
from the fact that there is an increase of about 9 %in precipitation for every 1 oc 
increase in the dew point; dew points over oceanic surfaces are of special 
significance. Maps giving the variation in precipitation water with dew points 
and elevations (of orographic barriers to inftowing air) are given with examples 
by Weisner (1970) and by the Tennessee Valley Authority (1961). In elementary 
applications of the method recorded precipitation-depth-duration curves are 
increased directly in proportion to the amounts of water that can be precipitated 
in the two catchment areas49. 

It has also been suggested that an empirical factor K ( T) times the standard 
deviation should be used in addition to the mean of a maximum precipitation 
sequence as an initial approximation to the PMP in the form given by equation 
6.26. For instance, Hershfield (1961) found that, in a key group of 24-hour 
United States stations, K(T) has an upper limit of 15. Meanwhile, Alexander 
(1963), in order to provide a measurably probabilistic basis to the problem, 
related the return period Tc of PMP in a catchment area Ac to the rank r, in 
descending order where r = 1, 2, 3, ... , N e. of observed maximum precipitation 
events in the homogeneous zone, of area Ah, as follows. 

48 See, for example, Lane (1948, chapter 1). . 
49 For practical application in the Tennessee valley area, see the Tennessee Valley 
Authority (1961). A manual for the estimation of PMP is given by the World 
Meteorological Organisation ( 1973). Calculations involving other criteria are also given 
by Weisner (1970) and elsewhere by Miller (1973). As regards national maps of 
maximum precipitation and other aspects of analysis and design, reference may be 
made, for example, to Chow (1964, sections 9, 21, 25), Linsley eta/. (1949), Berry eta/. 
(1945) and the Natural Environmental Research Council (1975). 
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6.12 Other methods and comments 

A different approach to flood estimation is possible through the generation of 
large samples of data by means of the daily flow time series models explained in 
chapter 4. Kottegoda (1972, 1973) has examined the possibilities through a 
linear autoregression model; the work of Green (1973) and Quimpo (1967) are 
relevant. Of more recent origin is the shot noise model of Weiss (1977) and the 
model of Treiber and Plate (1975) based on a deterministic system function (see 
chapter 4). One of the main purposes in this approach is to estimate parameters 
of a probability model from very large samples of data. However, there are 
problems regarding the correct formulation of daily models and the estimates of 
their parameters, and on average the uncertainties in this method may balance 
those in conventional frequency methods of flood estimation. Nevertheless, the 
output should be useful for simulation of complex systems. 

Monte Carlo methods could also indicate improved decision-oriented 
methods to counteract uncertainty in flood estimation, although practicalities 
are yet not clear. For instance, extensive computer studies were made by Slack et 
al. (1975) on the choice of distribution between normal, Gumbel, lognormal or 
Weibull distributions for high-flow data generated on the basis of these 
distributions. Their criterion is the minimum expected design loss with square 
root, linear and quadratic loss functions and variable scaling factors; the sample 
space was defined through skewness (in the third and fourth distributions), 
sample size and return period. If x(T) and x(T) denote the estimated and true 
values respectively of the design flood (in the authors' notation) an underdesign 
loss occurs if x ( T) < x( T) and vice versa. On the basis of expected opportunity 
losses, the normal does not seem to be disadvantageous, regardless of whether 
we identify the underlying distribution of floods or not. However, with limited 
information on skewness and detailed information on the relative scale of 
overdesign to underdesign losses, a substantial reduction in opportunity losses 
occurs. In a subsequent work, it was found that the assumed distribution which 
minimises the expected design loss is quite stable with respect toN, the sample 
size 5°. 

Because longer records of rainfall are usually available, attempts have been 
made to obtain improved estimates of frequencies of high flows from rainfall 
events. However, antecedent conditions, for instance, are highly variable, and 
because gauged rainfall data may not be representative of catchment rainfall 
there is high scatter in plots of rainfall against river flow. On the other hand, 
there is a central tendency for the return intervals in the two sides to be 
theoretically equal in the long run, but in a practical situation this property is 
not of much use51 . 

If we return now to the POT approach examined in section 6.9, perhaps its 
main drawback is that the data are not identically distributed. As an 
improvement, Todorovic and Rouselle (1971) formulated a seasonal model (see 

50 See Wallis et a/. (1976). 
51 See Larson and Reich (1973) and the discussion of their paper by Whittaker (1973). 
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also Todorovic (1978)). For this type of analysis, harmonic fitted cumulative 
sums of the mean number of exceedances of the threshold value in 17 periods of 
20 days and 1 of 25 days within an annual cycle are initially computed. The 
probability distribution of the largest POT value in, say, the summer season is 
given by 

Pr(X < x) = exp(- M -x/ll,p- M -x/ll,u) su sp su 

in which M sp is the difference between the mean number of exceedances at the 
end and start of the spring season and Jl.sp is the expectation of the POT value 
during the spring season; M su and Jl.su have similar connotations with respect 
to the summer season. The original work of Todorovic and his coworkers is 
commendable; nevertheless, the main problem of estimating the magnitudes of 
flood peaks for specified high return periods still remain, on account of the fact 
that the distributions of the annual maximum and partial duration series merge 
rather quickly. 

On the subject of annual maxima flows, Singh and Sinclair (1972) proposed 
an empirical five-parameter distribution comprising two normal distributions 
in order to model the reverse curvatures frequently seen in probability plots. In 
spite of better fits to sample data which is anticipated, there could be serious 
doubts about the true form of the population distribution as estimated by this 
method. The idea of mixed distributions is intuitively correct, but empirical 
curve-fitting methods cannot provide permanent solutions. Indeed, the future of 
objective treatment of high flows must lie on a rigorous mathematical and 
physical approach without restrictive assumptions. 

6.13 Final remarks and summary 

As mentioned before, great uncertainty is associated with the estimation of the 
probabilities of rare floods. This seems to be inevitable because, firstly, there is 
insufficient information at present to define empirically the right tails of density 
functions of high flows. Secondly, because of the underlying complexities that 
are unaccounted for, theoretical models are inadequate for dealing with the 
important problems. Therefore, a definite set of rules cannot be given in the 
foreseeable future for flood estimation, and any decisions taken will be subject 
to personal bias. More confidence could, of course, be placed in the estimation 
of average or more likely events. 

In the hydraulic design of a structure, such as a culvert for which the criterion 
is a high flow with a return period of about 5 to 10 years, the POT method 
should normally provide satisfactory answers when the available sequence of 
data is sufficiently long, perhaps more than 30 years. Large floods which affect 
the design of structures such as dams could be estimated through a probability 
function chosen from a selected few that fit the data. This may suffice for 
practical purposes when samples are sufficiently long and return intervals are 
commensurate with sample lengths. An indication of the likely errors which arise 



258 STOCHASTIC WATER RESOURCES TECHNOLOGY 

even in such cases is given in subsection 6.2.1; these errors would escalate when 
incorrect probability models are chosen or on account of non-stationarities. If 
the estimation involves an extrapolation far beyond the data sample, then the 
regional method is suggested which is also the best way by which floods at 
ungauged sites could be estimated. It is important here to bear in mind the 
limitations which this entails, such as bias and standard errors due to lack of 
representative data and incorrectly defined regional boundaries respectively. 

This means that estimates of floods of high return intervals are generally 
subject to serious errors. As regards very high floods that are a threat to life and 
property, the most feasible method of tackling this problem at present is by the 
PMP technique. Although the concept is subjective and the method tends to 
become arbitrary in practice, it helps to provide an engineering solution which 
takes into account the relevant information and uncertainties. 
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