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SYNOPSIS.

- This paper shows how the rise of pressure caused by the gradual
closing of turbine gates may be determined from Professor J oukovsky’s
theory of maximum water-hammer, A solution of the problem by the
trial-and-error method of arithmetic integration is first given, and
then formulas are derived that cover any governor time and any rela-
tion between governor stroke and gate movement. Two factors which
affect the rise of pressure are taken into consideration : (1) the elasticity
of water and of the walls of the penstoek; and (2) the effect of the net
head on the phenomena which oceur during the closing of the gates.
Previous writers have submitted formulas which neglect one or other
of these two factors, with the result that they do not give correct
results in all cases. The limitations of such formulas are determined
by the solution of the problem herein submitted.
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INTRODUCTION.

The purpose of this paper is to show how the excess pressure in
penstocks eaused by the gradual closing of turbine gates may be deter-
mined from Professor Joukovsky's theory of water-hammer. It will be
assumed that the theory of pressure waves, their amplitudes, and speeds
of propagation, as formulated by him and pmved by his experiments,
may be accepted as correet.

At the risk of wearying the reader who is familiar with Joukovsky’s
work, it is necessary, in connection with what is to follow, to sum-
marize as briefly as possible the prineiples demonstrated a number of
years ago by this distinguished Russian. For a partial translation of
his work, the reader is referred to Miss O. Simin’s paper entitled
“Water Hammer”* which should be examined carefully by every student
of this subject, .

Joukoveky’s experiments, made in 1898 at Moscow, were confined
to the instantaneous stopping of the flow of water in long pipes. By
his experiments he was able to prove the soundness of his analytical
determination of the maximum rise of pressure that would occur when
the flow of water in a pipe was suddenly arrested. The casual thinker
at first would imagine that—as force is equal to the product of mass
by acceleration—an infinite pressure would be produced in a pipe if
the water flowing in it were stopped instantaneously. On second
thought, he would realize that neither the water column nor the walls
of the pipe are rigid, and, therefore, the pressure caused by the shoek of
stopping the flow suddenly is relieved by the slight compression of the
water and the expansgion of the walls of the pipe. It was the effect of
these two factors that was determined by Professor Joukovsky. He
showed that the shock pressure is transmitted along the column of
water in the pipe in waves similar to sound waves; and that the shock
pressure is proportional to the destroyed velocity of flow and to the
speed of propagation of the pressure waves. This speed depends on
the compressibility of water, on the elasticity of the materials of the
pipe, and on the ratio of the thickness of the walls of the pipe to its
diameter. In other words, if the speed of the pressure wave is known,
the maximum pressure produced (called water- -hammer) hy instantane-

* Proceadings, Am, Water Works Assoc., 1904, p. 341,
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ously stopping water flowing in a pipe at any velocity may be calculated.
Joukovsky’s formula:for water-hammer is:

I

where / axcess pressure, in feet;

V = velocity of flow in the pipe, in feet per second:
g = gravitational unit, in feet per second per second |
and @ = velocity of the pressure wave, in feet per second, which

is determined by the formula:

12
= ———— e B e e R 0 ML {2)
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g  k 2 Kel

weight of a cubie foot of water, in pounds;

where W

g = gravitational unit, in feet per second per second ;

k = voluminal modulus of water, in pounds per square
inch ;

d = diameter of pipe, in inches;

e = thickness of pipe walls, in inches;

F = modulus of elasticity of material of pipe walls, in

pounds per square inch.

Joukovsky showed also that the shock pressure is transmitted along
the pipe with constant intensity and “at constant velocity, which seems
to be independent of the intensity of the shock.”

“The speed of propagation of the pressure wave remains the
same, whether the shock is caused by arresting the flow of a eolumn
of water moving in a pipe, or by suddenly changing the pressure in the
column of water (flowing or standing) in any part and by any other
means.”

“If the water column continues flowing, such flow exerts no notice-
able influence upon the shock pressure. In a pipe from which water is
flowing, the pressure wave is reflected from the open end of the pipe, in
the same way as from a reservoir with constant pressure.”

“The phenomenon of periodieal vibration of the ghoek pressure is
completely explained by the reflection of the pressure wave from the
ends of the pipe, 4. e., from the gate and from the origin [of the
pl_'[}E] .JJ-H-

Pressure waves, after traveling up the penstock to the origin or
point of relief and back to the gate, are reflected and transmitted again

— -

* Quotations are from “Water Hammer," by Miss 0. Simin.
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over the same course, as waves of rarefaction or sub-normal pressure.
In this manner pressure waves, alternately super-normal and sub-normal,
travel up and down the penstock until damped out by friection. During
the time taken by the wave to traverse its course from gate to origin
the pressure at the gate remains at its full value, either super-normal
or sub-normal, as the case may be.

Briefly stated, then, the premises are: that when water flowing in
a pipe is suddenly arrested, certain pressure waves, the characteristics
of which are known, are produced and propagated along the pipe at
constant speed and constant magnitude, and that the speed and magni-
tude of these waves may be caleulated for any given conditions.

FunNpAMENTAL EQUATIONS.

It is thé writer’s intention to apply herein this theory of preésm'e
waves to the phenomena which ocecur when the gates of a turbine at
the end of a penstock are gradually closed. The damping effect of
friction on the pressure waves will be neglected during the time of
closure. The variable velocity of the pressure wave due to the difference
in density of the water at the top and bottom of the penstock will also
be neglected. TFor the sake of simplicity, it will be assumed that the
gate opening is closed uniformly from full open to shut by a governor
which moves the gates at uniform velocity from the beginning of its
stroke to the end, and that the area of gate opening ig directly propor-
tional to the amount of gate movement, It may be stated here, paren-
thetically, that the resulting formulas may be modified, easily, to suit
any method of gate closure, whether the speed of closing and the rela-
tion of governor movement to area of gate opening is uniform or
variable. j :

‘When the gates of a turbine are closed gradually the velocity of the
water in the penstock is reduced to zero and the pressure in the pen-
stock rises. It is frequently assumed that the reduction in velocity
takes place uniformly, but the rise of pressure, which commences
immediately after the gates begin to move, increases the velocity of
discharge through the gate opening, and, during the early part of the
gate movement, tends to diminish the rate at which the flow of the
water is retarded. This variable rate of retardation, during the time
the gates are being closed, has an important bearing on the resulting
rise of pressure, and it is necessary to take it into consideration by
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determining the relation between the velocity of flow and the pressure
in the penstock. This relation may be expressed by the equation:

Vot—B N b b sl Ll s L (3)

where V,==1ni tiﬁ] velocity, .in feet per second, of the water in the

: o penstock before shut down: | '
H,= normal net head, in feet;

and B;=a number representing the gate opening. The value

of B, is best determined from the known value of

Vy and H, but, in fact, B, is the ratio of the area

of the gate opening to the area of the penstock

multiplied by A/2 ¢ times the coefficient of discharge

of the gate opening,

At any time during the closing of the gates the relation between T,
B, and H would be expressed by the general formula, V= B N H, If
the gates are closed in the time, T, and ¢ is the time from the beginning
of the stroke to any time before the end of the stroke, the value of
B, (tha.t is, B at the end of the time, ) for uniform closing, would be

4
(1 — T) B,. During the time, ¢, the pressure in the penstock has risen

an amount, h;, so that the net head, H, (that is, H at the end of the
time, £) would be equal to H, 4 h,. Therefore, the expression for the
value of V; (that is ¥ at the end of the time, ) is:

I_ —— L
Wi (1 U ?) Boyb Hih s St 4 4

CALCULATION BY ARITHMETIC INTEGRATION.

Before proceeding with the analytical determination of h,, it will
perhaps make the work clearer to show first, by a numerieal example,
how %; may be otained by the trial-and-error method of arithmetic
integration, Assume that the gate, instead of being moved in a eon-
tinuous uniform manner, is closed by a series of small instantaneous
movements with a slight pause between each movement. Iach little
movement of the gate would destroy instantaneously a small part, 4V,
of the velocity, V,, and, since this part of the veloeity is destroyed
instantaneously, the rise of pressure, according to Joukovsky, would be

A
T el

When the first instantaneous movement has taken place, let
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a pause of time, #, elapse before the next movement. Then
.dV:T"u—T?'Uatlﬂh‘:a( L Lie
: g
By these equations and Equation (4) a numerieal example may now
be solved, and at the same time there will be explained other interest-
ing phenomena caused by the closing of the gates and the pressure

waves produced thereby. The analytical work may then be more readily

understood.
Let. L — 890 1. ;
V,=11.75 ft. per sec.;
H,=—165 it.;
T =21 szec. (For convenience, T' has been chosen an even

2 I,
multiple of T) -

e — 4 680 ft. per sec. (This value of a is chosen simply because
this example was worked out by the writer for a pipe
in a tunnel and concreted in. The expansion of the
pipe walls, therefore, was neglected. For any con-
dition, ¢ may be obtained by Equation (2)).

Since V, = B, &/ H,, then B, = 0.91476.

Assume that the gates are closed in 24 successive instantaneous
movements. The time elapsing between each movement would then be
0.0875 see. After the first of these movements had taken place the
eates would have been closed one-twenty-fourth of their opening, and the
number representing the gate opening would have been reduced by one-
twenty-fourth of its value, that is, O—QEI:.E
the successive movements the value of B is reduced by the same amount,
as the gate motion is sssumed to be uniform. It will not be necessary,
however, to use more than the first three signifieant figures, and the
work may be done on the slide-rule. In this example the recovery of
the friction head in the penstoeck will be neglected.

From the foregoing may now be written the first three columns of
Table 1, and the first line of Columns 4 and 5. The table may then be
completed as follows: Assume a trial reduction in veloeity, caused by

— 0.038115. At each of

the initial instantaneous movement of the gate, and set the figure down
in Column 5 under the value of ¥V, and subtract it from V,, placing
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TABLE 1.—By AritEMETIC INTEGRATION.

Data:' L—=820 ft.- Vo =11.75 ft. per sec. H, =165 ft. T ==2.1 sec.
a =4 680 ft. per seec.

Friction negleeted.

713

|
(1) (2) | {(3) | (4) (5) « (6) (7)
; Ti | (Fat I Head Velooit M5 A TV =(Ah
7 1me, ake, eqo, elooity, | 45 : ={ah),
Interval, /. . I, V. AR hg. )
0 00,0000 0 Mdya 165,00 11,75 HEAN s e o
hgs11 LLO0BS LRSS
14 00876 | . 0L.RTERS 157,82 11,065 12,52
0.08411 0.095 1398
14 0. 1750 0, 53854 191,30 “11.570 26,10
08811 £.11) 14.50
84 0. 2625 0,80043 205.60 11.47 {40,60
. 008811 0.112 16.20
1 0. 8500 0.76:232 221,80 11,858 56,80
: 0.03811 0.258 37.40
114 0.4575 0.72421 234,56 11.10 66,56
0.08411 0.29 42,10
116 0.5250 | 068610 249,10 10,581 84,10
i 0.08811 080 48,50
184 0.6125 | 0.64700 263.60 10.51 08,60
b 0.08411 0.88 47.80
2 0.7000 | 0.60988 270,00 10,18 114,00
0.08811 0.43 62.80
214 0.7875 057177 201.14 0,75 126,14
0.085811 ; 0.47 68.20
214 0.8730 053306 802,70 0,28 137,70
003511 0.48 £0.60
284 0,0625 0. 19355 $14.80 8.80 149,80
0.08811 0,53 76,80 :
3 1.0500 0.457d4 327.90 8.27 162,90
0,081 1 0.58 84,00
814 1.1375 0.41983 337.46 7.60 179,46
0.03811 0.61 88,40
814 1.2250 0, 85111 846.10 7.08 181,10
0,08811 0.62 90,00
3% 1.3125 0. 34300 854,90 6.4 189,00
0 08511 0.6 97.10
4 1.4000 0, 30480 361.60 5.79 198,60
008811 068 98,60
414 14815 | 0.26678 866.60 5.11 201,64
. 008811 0.70 101,50
415 1L.AT0 | 0.22867 871.10 4,41 208,10
0, 04811 0.715 103,80
484 1.6625 0,19066 376.10 2.005 211,10
0, 05811 (0.780 106,00
5 1.7500 0.15245 878.80 2,965 218,50
01,0851 1 0,750 106,00
al4 1.8875 0.11434 880.66 2.285 215,66
0, 04811 0.745 108.00
5l 1.9250 0.07623 882.70 1.480 217,70
0,08811 0745 108,00
B84 2,0125 0.035812 881,00 0545 216,90
0.745 108.00
(i 2.1000 0.0 381,70 0.0 216,70

the difference immédiutely underneath. This trial figure is 4V, and
is assumed to be destroyed instantaneously by the first movement of the

is therefore started up the pipe.

adv 4 680
gate. A pressure wave,dh,of magnitude, — =

L)

32.2

(4V)=1454V,

The product of 145 4 7 is set down
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in Column 6 opposite 4V. In Column 7 is recorded the algebraie sum
of the values of 4k. Having obtained the figure in Column 7, it is
added to the net head, H =165, and the sum is set down in the next
line lower in Column 4. The result must now be checked, to see that

BN = V, where B is 0.8766 and H and ¥ have the values recorded
in their respective columns opposite B. If the relation is not satisfied,
a new trial value of 4V must be chosen, and the operations repeated
until a cheeck is obtained. After trial, the initial value of 4V was
found to be 0.085. Proceeding in this way, the rise of pressure at the
end of 0.35 seec. is found to be 56.80 ft. This rise has taken place in
four successive jumps, '

At this point it becomes necessary to trace the course of the pressure
wave started up the penstock by the initial movement of the gate.
This wave has a velocity of 4 680 ft. per sec., and travels at that rate
toward the forebay or origin of the penstock; after arriving at the
origin it is reflected and returns to the gate at the same velocity. The
distance from gate to forebay and return is 1 640 ft., so that the pressure
wave takes 0.35 sec. to cover this distance. On its arrival at the gate
it is reflected immediately as a wave of sub-normal pressure, and com-
mences its journey again from gate to forebay and back. At the
instant the wave becomes sub-normal, however, the gate is given one of
its instantaneous closing movements, eausing a further reduetion in
the velocity of the water flowing in the penstock and the consequent
rise of pressure incident thereto. Thus, at this instant, two factors
have to be taken into consideration: the rise of pressure eaused by the
fifth little instantaneous movement of the gate and the fall in pressure
caused by the ehange from super-normal to sub-normal of the pressure
wave produced by the first or initial movement of the gate which
occurred 0.35 sec. before.

By trial-and-error the velocity that has been destroyed b}: the fifth
movement of the gate is found to be 0.258 ft. per sec., and .the result
is checked as follows. Multiplying 0.258 by 145, the magnitude of the
resulting pressure wave is 37.4 ft., and this added to 56.80 would make
the total excess pressure existing equal to 94.20 ft., were it not for the
faet that the initial wave has returned to the gate and become sub-
normal. The amount of the initial wave, as shown by the second line of
Table 1, is 12.32, and since it not only falls to zero but passes below
zero to a sub-normal pressure of equal amount, there must be subtracted
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twice 12.32 from 94.20, making the net excess pressure existing at that
instant 69.56 ft. Adding this to the initial net head, H,6 =165, the
value of 7 is checked as before by the formula, ¥ = B &/ H.

Proceeding then as before, and remembering that the pressure rise
caused by the sixth movement of the gate is reduced by the fall to sub-
normal of the wave produced by the second movement of the gate, and
the pressure rise of the seventh movement is reduced by the wave
produced by the third movement, and so on, there may be ecalculated
the successive increments of pressure.

For convenience, the time required by the pressure waves to travel
from the gate to the origin of the pipe and return to the gate again
will be ecalled one interval. The interfering waves referred to in
the foregoing paragraph are then always one interval apart.

After the eighth movement of the gate has taken place, it is found
that the net excess pressure has reached 114.00 ft. At the instant the
ninth movement takes place it must be noted that the pressure wave
produced by the first movement of the gate, which has traveled, during
the first interval, from the gate to the origin and back as a wave of
super-normal pressure, and during the second interval over the same
course as a wave of sub-normal pressure, has now returned to the gate
and, again lmc{l;"ming guper-normal, is again reflected and commences
its journey from gate to origin and back, Thus, at the ninth move-
ment of the gate, there must be taken into consideration the pressure
wave caused by the instantaneous destruction of the velocity at that
instant, the sub-normal wave due to the fifth movement, and the super-
normal wave due to the first movement. After adding to the excess
pressure existing at the end of the eighth movement, the rise of pres-
sure caused by the ninth movement, there must be subtracted twice the
pressure caused by the fifth movement, and there must be added twice
the pressure caused by the first movement, or, in other words, there is
subtracted twice the difference between the fifth and first waves.

By thus keeping in mind the position of the wave propagated by
each movement of the gate, Table 1 may be completed, and the resulting
maximum rise of pressure is found to be 217.70 ft.

Fig. 1 is a series of graphical diagrams showing the magnitude of
the pressure waves caused by the successive instantaneous movements
of the gate. A separate diagram is drawn for each movement, pres-
sure being represented by the ordinates and time by the absecissas




Y16 PRESSURES IN PENSTOCKS

The change from super-normal to sub-normal and vice versa is shown
at the end of each interval of time. Fig. 2 is the excess pressure-time
curve plotted from the figures in Column 7 of Table 1, or, what amounts
to the same thing, from the algebraic sum of the pressure waves shown
in Fig. 1. ;

Table 2 shows the method of determining the results when the
recovery of friection in the penstock is included, an example being
selected where the frietion head is an appreciable quantity. The

TABLE 2.—By ARITHMETIO INTEGRATION.

Data: L==063837ft. V,==15.055 ft. per see. H,=1 260 ft. T = 69.5 sec.
~a=23 047 ft. per sec. Trietion head /i, = 81 ft.

(1) {2) 13 | i(4) | (51 (0) (7 (8) {9
b Guate | Head, Velocity, ANA, 1< s I Lt Zlah-t-aha,
Ill!.l.l""n’“l. R, M, Iw_ A h-. &0 h. ‘hlr' . AT f .ﬁr ..-r
|
0 0,421 1 18600 15. 055 S H1.0 faes fnae
{1, 156 17,6
1 0,4108 127082 ‘1;|].11~": 3.6 1.5 .8 1.7 19,9
2 0.4084 | 12508 14,61 15,1 .5 .0 0.8
T TR R 3 i -
b 0, 8000 | 12240 l:ﬁ.::: o% o 1.4 A .0 24.0
4 3806 | 12918 14,00 2.9 0.1 1.9 31.8
[ .37 41 .H
o [ 03784 | 1205.6 14,64 209 06,4 14.6 an.5
| (.49 47.6
fi 0,865 © 1805, 8 1.2 E VA 1 B2:8 ) ABT i
({0 [, |
T 0, 8518  1811.8 12,59 Ba. A0 | 230 al.8
(h.54 69,5 !
H 00,8854 | 1819,0 12,14 31.0 53,0 2H.0 89,0
0, 10 .5
) 0,8180 | 182308 11,54 i6.5 45.0 B0 9.5
0,5 T3.6 |
10 10,2001 | 13849 1}:3% !_ 4ty I 86,7 42.8 8.2 | .9
11 0.82781  1848.2 10,423 44.6 474 43,6 RH.2
! .84 048
12 0,2544 | 1859,7 0,84 G0.3 4.6 48.5 0.7
.42 14,0
13 [ 0,2285 | 18069.2 H.4b ad.8 25,6 b .4 i, 2
0,497 10, 5
14 0, 2008  1876.6 e | | BB.Y 20.1 6.9 116.6
; 1.07 121.0
16 0.171% | 1891.6 (.42 (6.3 14.% 6.3 181.6
1.16 80,0
16 01411 | 1895.8 0.3y 6.7 9.0 1.1 185.8
1.21 186,45 l
1% | 01088 1407.2 4,08 e 5.9 il | 147.2
| | 1.438 150.1
14 0,0:25 | 14163 L i | YR.O 2.7 T84 156.8
1306 164.%
18 0.0368 | 1116.5 1,86 6.2 | 0.7 G L 156.5
1. 865 iid.2 [ |
a0 i, 11,0 (. 8.0 L1 i £1.0 | 154%.0

* Non-uniform gate motlon,
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operations are almost identical with those just deseribed, up to Columns
6 and 7. To avoid reference to the foregoing, however, the formation
of Table 2 will be deseribed from the beginning. In the first line,
opposite B = 0.4241, set down in Columns 3, 4, and T, the known values
of H,, V,, and h; (friction head). Next, assume a trial reduection in
veloeity, caused by the initial instantaneous movement of the gate,
and set the fizures down in Column 4 under the value of ¥V, and

220 | 1 ! = =y
210 r=tiig % et = el
o200 | ] oy — £ }
1M — ~—
180 3} ‘ e i
170 M-
160 et —
160 - - |
& RISE OF PRESSURE 1N PENATOOKE
‘éldﬂ - A DUE TO GATE CLOSURE. e
7 7 qﬁﬁ. PRESAUIE AND VELOQITY = TIME CURVES,
130 AT PLOTTED FAOM ARITHMETIC INTEGRATION
: = IN TABLES 1 AND 8
5 120 o
5 e i b < L = 820 f¢,
ﬁ 110 11 e W=11.76 ft. per see,
& 100 2410 ____:\' 5] [ @usdBEO ft, por pec, 1|40
7 Friction Neglected. I
a 00 |—Bi-9—— B e
-?1 {1 T B E{ﬂﬂ.@ 12l = 3 {
= A R
0 ...fé. 1 i e b =] =
60 b6l ' : ) ﬁhﬂ\\\
BO | == g . e
B ~
402 --- —— e
30 -2 (-8 —|— —t — 7’“‘\
S |
20 g ——— 1 sl el i \:
10 11— ' - |
0 1 1
0 1 2 & 4 B [
Time, in Intervals of 2 Seconds

- Fia. 2.
gubtract it from V,, placing the difference immediately underneath.
This trial figure is 4 V, and is assumed to be destroyed instantaneously
by the first movement of the gate. A pressure wave, 4 h, of magni-
3647
‘ 32,2
pipe. The product of 113 4 V is set down in Column 5 opposite 4 V.
In Column 6 is recorded the algebraic sum of the values of 4 h. In
Column 7 the total friction head, due to the velocity shown in Column
4, is set down, and, in Column 8, the frietion head recovered at each

tude = ﬁ.}:f)__a = (4 V) — 118 4 V, therefore, is started up the
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operation is shown. For convenience, iy may be made equal to F V2,
in which I is a coefficient obtained from the known values at the begin-
ning. In the example, F'==0.83574. Column 9 shows the sum of the
opposite items in Columns 6 and 8. Having obtained the figure .in
Column 9, it is added to the net head, H, =1 260, and the sum 1is set
down in the next lower line in Column 3. The result must now be

checked to see that B A/ H = V, where B is now 0.4168, and H and V
are the values opposite. If the relation is not satisfied, a new trial
value of 4 ¥V must be chosen, and the operations repeated until a check
is obtained. After trial, the initial value of 4 V was found to be 0.155.
The operations for obtaining the figures on the third line are not quite
the same as those just deseribed, because, after assuming the next trial
value of 4 V, and multiplying it by 113, it must be remembered that
the resulting pressure at the gate is reduced by the return of the first
wave, which has traveled up to the forebay and back, and now changes
to sub-normal and repeats the journey. The time at which the gate
ia given its second movement has been selected purposely to coincide
with the return of the first wave. The item opposite Interval 2, in
Column 6, therefore, is the difference between the first two figures in
Column 5. The other operations are similar to those already described,
and the resulting figures in Columns 8 and 4 are checked similarly
with the value of B = 0.4084. The succeeding lines are filled in by the
same process, always keeping in mind the return of the preceding waves,
and whether they change to sub-normal or super-normal. A little
study will diselose the fact that the figure in the second line of Column
6 may be obtained by subtracting the figure in the first line of Column
6 from the figure in the second line of Column 5. BSimilarly, the figure
in the third line of Clolumn 6 may be obtained by subtracting the figure
in the second line of Column 6 from the figure in the third line of
Column 5, and so on. . :

At this point it is interesting to repeat the trial-and-error work for
the foregoing example worked out in Table 1, but using only 6
instantaneous movements of the gate instead of 24. The results are
shown in Table 3, and the pressure-time curve in dotted lines in Fig. 2
From these it will be noted that the total rise of pressure is the same
as that obtained by the caleulations for 24 movements, and, moreover,
the resulting pressure at the end of each interval is th':_a same in both
cases. Although six movements of the gate, or one movement to each
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TABLE 3.—By ArmEMETIC INTEGRATION,
For Data, see Table 1,

—

(1) (2) (33 (4) (5) (6) (7)
b Time, Gate, Head Velocity, 146 A T, (A h),
Interval, T K. o 7, ¢ AL iy
0 0.0 (1, 9150 160600 11.%5
0. 392 50.8
1 {145 {1,762 291.8 11, 868 6,8
1,174 171,10
2 .70 1,608 2008 1018 114.2
1,0 217.0
i 1.05 . 45% 8RT. 8 8.87 i 162.8
2,48 Bi0 0
[ ! 1.40 (b, 804 . BOR.20 8.9 197,82
3,508 410,0
i 1.7H 0. 1620 arr.8 2, G 213.8
2,005 4480 .0
[i] 2.10 0.0 ¢ BRR.A 0, (1) f1%.2

e il ! e

interval of time, are sufficient to determine the pressure rise at the
end of each interval, it requires the larger number of movements to
obtain intermediate points on the pressure-time curve. If a still
greater number of movements is taken, the increments in pressure
riso become smaller, and, in the limit, the stepped diagrams similar to
Fig. 2 would become a sgeries of smooth curves from the beginning to
the end of each interval. The diagram, however, would not necessarily
form a smooth eurve from the beginning to the end of the closing time,
because cusps or changes of curvature at the end of each interval
result from the action of the pressure waves in changing at that instant
from super-normal to sub-normal or vice-versa, . When the duration of
closure is short, the change of curvature in the diagram at the end of
each interval is frequently very apparent; but, when the duration of
closure is long, the changes of curvature in many cases cannot be
detected by the eye. These changes of curvature at the end of the
intervals make it difficult to formulate the integration which can be
performed so easily by the trial-and-error work already explained.

It is possible, however, to obtain a series of equations, one for each
interval of the closing time, that constitute a direct mathematical solu-
tion of the problem, without recourse to trial-and-error methods: The
foregoing example has been explained in order that the analytical work
may be more easily understood, and in order that the method of tracing
the course of the pressure waves and keeping track of their periodie
changes may be kept clearly in mind. More particularly, it should
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be borne in mind that though a formula may be written for the pres-
sure rise in the first interval, using only the known quantities existing
before the shut-down, the formulas for the pressure rise in any succeed-
ing interval will involve, as one of the known quantities, the value of
the pressure rise at the end of the preceding interval. It thus becomes
necessary, when ecaleulating the pressure rise at any time during, or
at the end of, the closing of the gate, to obtain first the amount of the
pressure rise at the end of each preceding interval. Moreover, if it is
desired to determine the pressure rise at any time between the begin-
ning and end of any interval—that is, at any fraetional part of an
interval—not only is it necessary to determine the pressure rise at the
end of each preceding interval, but also the pressure rise at the same
fractional part of each preceding interval. This also applies in deter-
mining the excess pressure-time curve when the duration of elosure is
not exactly a whole number of intervals.

NOMENCLATURE.
L = length of penstock, in feet ;
a = velocity of pressure wave, in feet per second ;
g = acceleration due to gravity, in feet per second
per second ;

2L : : s
P one interval of time ; :

I

I = governor time, in seconds, i. e., total duration
of gate closure ;
T, T, T, ....T,=time at the end of the 1st, 2d, 3d, .... nthin-
terval ;

tys lgy tgy .. .. %, = any time during the 1st, 2d, 3d, .... nth in-
g terval ;
n == any number of intervals ; the final interval in

the time, T, need not be complete ;
. H, = normal net head, in feet ;
Tiyy Tyy Pigy oo by, = excess pressure above normal, in feet, existing
at the end of the 1st, 2d, 3d, .... nth inter-
Lt a .« FTT £ ) .
val, 4. e., at the times, 1%, %, T ... T
By s By Bty onnw by = eXcess pressure above normal, in feet, at any
1 2. Y

time during the 1st, 2d, 8d, ....nth interval,

1. €., at the times, t,, #,, &y, .... 1,
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Vy = initial velocity, in feet per second, of the water

in the penstock before shut-down.
Vi, Vas Vay --.. V¥V, = velocity, in feet per second, of the water in the
penstock at the end of the 1st, 2d, 3d, .... nth

interval ; 1 :

I’!I, V! 2513 OICERE V, = velocity, in feet per second, of the water in the
penstock at any time, ¢,, ¢, lgy -~-. t,, during
the 1st, 2d, 3d, .... nth interval ;

FFB
— = a number representing the gate opening ;
By = A/ H, g
ay? NG a
5, = (g;) (=2) 3 By=2 7,
AN a
5.=G) Q=3  mourine
a? 2 3 a
Sﬁn. = (g) (1 — E;) Bﬂ" Rf‘g e— }12 - f.'} VE — Utn
: a
Gt‘l= S{V—‘V) Iﬂ"ﬂ_.lmkﬂ_]_t_g_vﬂ_'lmc.tﬁ-l
a (ﬂ) i S
C@: Q(F—V)—G P q t
=y a 2
i - = S F
G:ﬂI g( n—1" Fr_n)_t'rn_l ( ¥ 4
-
F' = a friction factor such that (“_) 8,
F V* = total loss, in feet Z, = :
of head, for velocity, V: (“)

(5) 5,
ZH a 2
G) +5.F

Time is always to be measured from the beginning of the gate
movement. Thus, the time, £,, is the time from the beginning of the
stroke to some time between the first and third intervals. The sue-
cessive values of £, £,, ete., must always be one interval apart.

Furst : Derivation of Formulas with Friction Neglected—Joukovsky’s
formula for water-hammer, as already stated in Equation (1), is:

v
st

g
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During slow closing of the gate, d h = *av

g
At the beginning of the closing time, as already stated in Equation (3),
Vo = B, an
and, in general, V=01 4\/1{0 BT

For the first interval :

.
f"n an—% 0 a0
0 g ]’!‘

where h, = pressure rise at any time, {,, during the first interval,
1
and ¥V, = velocity at the time, ¢,, during the first interval.
1

Integrating, then :

Bt (e Vo) a3 e i (5)

Since ¥, must be proportional to the gate opening multiplied by the
1
square root of the head, then, for uniform gate motion :

Substituting this value of V, in the equation for 2, , the latter be-
1 1

Comes:
a __ 2 t e
by == 7 (1 2 i}) By N H, + h,

' LA
For simplicity, substitute the symbol, &, in place of ; Vy, and the
symbol, J\/Ib:l, fﬂr: (1 — '—;’T) B,.
Thus: hh = Ry — »\/H‘: (H, + "*:‘)
Squaring: {h,l — R)* = St1 (H, + ﬁ‘l)
Expanding: h‘J’ — 2 h‘l R, -+ R® = Sn H, + Stl h,
Collecting: h‘:l“ — h‘: {8‘1 + 2 R) + R,* — S': H, =50

1
Solving: h-:l = .{(Sli + 2 Ry)
* N, + 2Ry —4R] +4 S,IHBI'
1

Simplifying : hy, =5 {(S, +2Ro) = A/§ (S, + 4Ry + 4 Hy)}....(T)
| 1 1

For the second interval, an examination of Table 1 will sh;:tw that

; ¥ ¥,
fhfnd}a=if1d1—’+h.l-—-2£ ‘av
0 g Trf-: ﬂ F"'.l
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Where Ia.,ﬂ = pressure rise at any time, ¢,, during the second interval;

V, = velocity at the time, t,;
H
i, = velocity at the end of the first interval;
h, = pressure rise at the end of the first interval;

t; = velocity at the time, ¢;, which must be exactly one interval
before the time, #,. '
: : ; £} 3 a 3
Integrating: then ?!t:! = P (V; — Tfr_n) + hy — 2 E (Fy= Vi) os(8)

il

Substituting t’]’E1 for 2 Lg

Vo— o)

a
hy, = i Cry=— V)i hye— Grl

Again, sinee V“z must be proportional to the gate opening multiplied by

the square root of the head, then, for uniform gate motion:
. f, ol e Ry e 8
7= (11— ;) BoN Hy + Fyvvvaa i oovso(B)

Substituting this value of V7, in the equation for h, the latter becomes
2 g

a (ot Ly T ;
-"“‘*;.ﬂ — r_: VI e ‘!,‘J,“ (1 T 9:1) “n ’\’/”u T "'*'ﬁu 20 hl T r‘ar-i'
Substituting the symbol, If‘,l, in place of —:j Vi 4 Ay — G, , and the
f 1

_— it By
symbol, ‘\fﬁ,z, for 7 (l — T;r) f.fl,,
by, = R, — NS, (Hy + k)
Squaring: (b, — Hﬂ)z = 8, (H, + )
Expanding: o, * — 2 A, R:i -4,—}.'13,1“ = S‘u H, - S‘a h";
9 g -

Collecting: h,E:’ - h‘u (Hf,, ) R"'x) e Rclz 33 S‘u H, =0

‘l e s —— ...*.... . =l
Solving: %, = ?{ (S, + 2R, )£ N (S, + 2B, —4RB,* + 45, Hﬂ}{

Simplifying: h'tﬂ = E{ (S*:: 42 Iftl} b '\/‘S:ﬂ (S,H + 4 L’:l + 4 H)) %..(110}

In a similar manner, the value of A, at any time in any interval, may
bhe found,

Second: Dertvalion of Formulas with Friction Included.—In the
. foregoing analysis no account hag been taken of the effeet of frictional
losses of head in the penstock. As the velocity in the penstock is
gradually destroyed, the friction head is gradually recovered and is
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added to the net head, producing discharge through the turbine gates.
In any penstock the total frictional losses may be assumed to be pro-
portional to the square of the velocity of flow, and may be represented
by a coefficient, ¥, such that FV2=total loss in feet of head for a
velocity, V. The velocity head recovered at any time in the first
interval, therefore, is ¥ V. — F 7, ?. This head must then be added
to the sum of H, | h‘l’ in determining the relation between velocity,

gate opening, and head, as given by Equation (6).

THug: el — (1 — ;‘,) By A Hyy + Rl £ Vo 52 I}-:;i

1
a2
Squaring: V}? = (1 — ;5,) By (Hy + b, + F Vi —FV, %

: 2 _ 6
Collecting: T”}l" —El ~+ (1— :IIT) .HﬂQF,F

= (1 _‘;1) B (H, - 1) V)

; : z 5 (L
Solving, and multiplying numerator and denominator by T

1 (}Ijﬂ a)‘ﬂ( '_"'EIS? i
-- | Y S P
\ o —|_ ( q T ]
. o ' AN
Substituting S, for ( ) (]_ — -,1-,) B

S, (Hy + kb, + F V1)
V, = —— (11)

t, T
S, F
N (g) i
[ngerting this value of Vﬂ in Equation (5) for }"f.ai,
S, (H, +h, +FVp2
Then: h, — — Vo — % / i nﬁ 2;-r‘ :
\ (E) il e

Sl
Solving for k, in the same manner as that used in obtaining Equation
1

f

(7), and substituting &, in place of % V,, and Z, in place of
2
i d
7
.r,r i

(£) ot 50
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Then: %, = ; { @Ry +2) =N Z7 47, (B, + I, + F V) } .(12)

In 2 similar manner, the equation for A, isobtained by adding F' Vs
— F 1"}: under the root sign in Equation (5;) and inserting the resulting
value of V, in Equation (8). Without performing the operations, which

are similar to the above, the result may be written down at once.

1 . s = T :
h,=g | @R+ Z) NZFT 12 ®, + H, + 7 } ..(13)

Where: B, = (; Vi + hy — Gﬁ)

2a X
C, =—(Vo— T":l}

1 f]

T
ok g il
O

2 2
and S¢2 — (3) (1 — ‘;;) By

Similarly, the value of %, at any time in any interval, may be found.

Z

When the gate motion is not uniform, the value of S, has to be made
a * A
equal to a? (g') 7250 (l- —- T) » where 2 is a constant or variable coefli-

cient, which may be determined by plotting the eurve of gate opening on
afime base. For uniform motion, the curve would be a straight line, the

: : : : t
ordinate of which, at any time, ¢, is (1 — T) B,. For any other than

uniform motion, the ordinates of the straight line would be multiplied
by the constant or variable, , which, if the motion varied in a regular
manner, might sometimes be expressed in terms of ¢, either graphieally
or analytically, from the known relation between the governor move-
ments and the gate opening. If the motion were not regular, a graphical
golution only eould be obtained.

Tables 4 and 5 show the values of /; obtained by using the formulas
in the examples worked out by arithmetic integration in Tables 1, 2,
and 3.

It should be noted here, by way of caﬁtion, that, in ealeulating the
value of h, the two terms inside the larger brackets of the foregoing
formulas are frequently so large and their difference so small as to make
it necessary to perform the work by logarithms. The correct result
cannot be obtained in such cases by using an ordinary 10-in. slide-rule.
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TABLE 4—By ForMULAS.

Data: L=820 ft. V,=11.75 ft. per seec. H, =165 ft. T =—2.1 seec.
a =4 680 ft. per sec. Friction neglected.

(1) (2) (3) (4)

Gate, Hize of pressure, Velocit
Interval. B }:‘_ v ¥s
(] 0.9148 0.0 11.7500
08706 13.13 11. G064

0.5385 25.53 11.6740

3 0. 5004 40,41 11.4718

i | 0.7623 £6.90 11,8571
114 0.7249 649,94 11. 1004
' 1;& 0.6%61 83.72 10, K205
13 0. 6480 98.31 10,5149
e 0, B0 118.63 10, TEOG
214 0.6718 125,78 9. 7505
E;g 0,6387 158,06 0. 2000
4 0, 4956 150,52 8. 8005

8 0.4574 162.42 B, 27606
AN 0.4198 171.9% 70870
b 0.8511 181.10 7050
8% 0.8430 180,43 6, 4574
4 0. 3049 106,77 6,700y
4 0. 2668 203,49 5. 1140
4 0.8287 207 .14 4,4118
334 0, 1004 211 .04 . 00050
] 0.1526 218.70 2GRN
i) 0.1143 21576 2. 2808
b 0,.0762 216.71 1. 4887
: 0.0881 ' 216,95 0. 7446

H 0.0 i 216.57 .10

It is now interesting and instruective to compare the results given
by the foregoing formulas with those given by other formulas which
have been proposed to determine the rise of pressure caused by gradually
stopping the flow of water in pipes. For this purpose, Fig. 8 has been
prepared. There are three such fundamentally different formulas
known to the writer, namely, those of Mr. L. Allievi,* M. M. Warren,}

*yThe writer was unable to obtain an English translation of Mr. Allievi's paper,
but hia formula s commonly given as follows:

N H Nz
B e el 2
5 b .\]4 +N

Where k = rise of pressure, In feet, above normal ;
H = normal net head, in feet:
LV
N= \grr):
L =length of penstock, in feet:

¥V = velocity of water in penstock, in feet per second:
T = duration of gate closure, in seconds:

7 = acceleration due to gravity, in feet per second per second.

* Transactions, Am. Soe. C. E.,, Vol. LXXIX, pp. 238, 242, Mr. Warren's
formula is:
Ly
= T T where a = veloecity of the pressure wave, and the other symbols
v (r— &
L
have the same significance as in this paper.
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TABLE 5.—By ForMULAS.
Data: L—=6337 ft... V =15.055 ft. per see. H,=—1260 ft.
7= 69.5 sec. @ =3 647 fi. per sec. Friction head, h; =81 ft.
Non-uniform Gate Motion.

—

11 ! 12) (3) (4)
Interval, I ""E’“‘ Rize of pressure, Velocity.
| !
1 ! 0.4241 0. 15.0550
1 | {.4168 18,68 14, B0}
2 | (1. 4084 20,42 14,0187
3 f 0. 30995 25.04 14,4210
4 | 08505 80.74 159931
a | 0.8734 B, 52 15.6201
1 | 0. 3657 44 12 13 2008
Ty 11.8518 H2.07 12.7250
8 | 0, 3364 59096 13,1864
9 | 0.3180 bR .27 11.5808
10 {).2091 76.568 10,9258
11 | 11,8731 BT, 85 10,2007
li ‘ lf]}.;.:;-l 15!;:.:;.:3 8. 53703
1% 285 10.1 §.4561
14 | (b 2un 118,58 7. 4608
15 1.1719 128.15 6, 4024
15 ‘ 0.1411 136, 68 5.9748
17 0, 153 146.75 4.0599
15 i 0,076 156, 04 2.730
i9 , 1,0863 156,18 1,3638
el 0.0 159.921 0.

Assoe. M. Am, Soe. C. E, and H. C. Vensano,* M. Am. Soec.
C. E. The formula by Allievi gives the maximum excess pressure
caused by stopping the flow of a column of water, assumed as an
incompressible fluid, moving in an inextensible pipe, and negleeting the
effect of friction. Mr. R. D. Johnson,t Mr A. H. Gibson,} and W. F.

'.fmm:?r,r.tnn.s. Am. Boe, C. B, Vol, LXXIX, pp. 259299 and Vol, LEXXXII, p.
185, Mr. Vensano's formula is:
A | o
o= 5T’ with the limitation that & can never be greater than Lt s

|
T Ironsactions, Am, Scc. C. E., Vol. LXXIX, pp. 277-281. Mr. Johnson’s

formula is:
2MY _
Hopy St (.-u . a~/.aﬁafsw-m)
roand

where H .. = maximum rise of pressure, in feet, above normal; M = L T;

N =2 g ¥ T, in which ¥ is the normal net head In feet, and the other symbols
bhave the same significance as in this paper.

¥ “FWater Hammer in Hydraulle Pipe Lines", by A, H. Gibson. Mr. Gibzon’s
formula is: (In order to prevent confuesion with the I‘megaing some changes have
been made in the numcnc]atum]

i [(I ! ) T 4 B EVVA— (‘rf _)]

where p" = rise in pressure, in pounds per gquare fool, behind the wvalve at the
instant when closure is complete, and therefore when p I3 maximum ;

A = cross-sectlonal area of penstock, in square feet;

A; = maximum effectlve area of valve opening, in sguare feet;

1w = weight of a cubic foot of water:

and the other symbols have the game signIfiuance as in this paper.
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UhL* M. Am. Soe. C. E., have each presented a similar formula, with
different nomenclature and somewhat differently arranged, but all give
the same result as Allievi’s formula, Mr, Johnson has also presented
a method of determining the pressure-time curve resulting from the
same assumption,} and Mr, A, H, Gibson has shown how friction may
be taken into account by successive caleulations.d

The limitations of the Allievi formula are well known to these
authors, as they specifically refer to them; they are known, also, no
doubt, to many others who use that formula, because it is readily seen
that, for zero duration of closure, the formula gives an infinite pressure
rise, and this eannot be so beeause the finite value of maximum water-
hammer, for instantancous closure, has been proved by Professor
Joukoveky, Allievi’s formula takes into account the effect of the net
head on the phenomena that occur during closure. In Fig. 8, there
are shown in dotted lines a series of Allievi curves for varvious heads,
and, for the data assumed, these show the maximum rises of pressure
as ordinates and durations of closure as abscissas, For convenience,
the time abseissag have been marked off in intervals, instead of seconds,
The curves, it will be noted, become very steep as the duration of
closure becomes short, and, in the limit, appear to approach infinity
as the duration of closure approaches zero. TFor low heads Joukovsky’s
limit of maximum water-hammer is passed by these curves at points of
relatively long duration of gate closure. In Fig. 3, a similar series

* Transactions, Am, Soc. Mech. Engrs.,, Paper No, 1854, Mr, Uhl's formula is:
I Tt !
7= 5 (e A/ i)
where DH = rige of pressure, In feet, above normal ;
LT
H =;,rT—H‘ in which the aymbols have the same significance as in this paper.,

T Transaetions, Am. Soc. C. H, Vol LXXIX, pp, 277-281. Mr. Johnson's
formulas, to be solved as Indleated In his discussion, are:

"N r—1
e e,
n i

H+ A u,
7— N ¥ H+ A/ T
LV

5T Y\ e
andﬂ.=\]( QLV )4-1. H=agp Y{ !

o — ¥
whers @ = i { } « R being M

= —L—-'P'-: (n41)

J_Eg T N{ Y

t "Water Hammer, in Hydraulic Pipe Lines”, by A. H. Gibson,
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of curves for various heads has been plotted from the result obtained
by using the writer’s formulas, and these are shown in full lines. It
will be noted that these curves show maximum water-hammer for any

- 2 L
duration of closure from zero up to one interval (a--ﬂ;--), and, as the dura-

tion of closure becomes longer, the resulting rise of pressure finally
approaches, within certain limits, the value shown by the Allievi eurve.
For low heads and short durations of closure, the Allievi |curves
generally show higher values of pressure rise than those of the writer;
but, for high heads and short durations of closure, they show lower
values of pressure rise. This interesting fact will be referred to later
when discusging the pressure-time curves.

The formulas of Messrs. Warren and Vensano do not include the
net head as a factor, and, therefore, each may be represented, as shown
in Fig. 8, by a single curve for all heads. Although these two formulas
are objectionable, because they neglect the influence of the net head,
it is evident, from the position of the curves representing them in
Fig. 8, that under certain special conditions they will give, at least
approximately, correct results. These conditions will be referred to
later when discussing the pressure-fime curves, but it is interesting to
note here that Mr. Warren’s formula gives approximately the eorrect
results when the met head iz such that the excess pressure will be a
minimum for any given duration of closure. Mr. Vensano’s formula
gi'l;'cs approximately the correct result when the net head is very high
with respect to the velocity destroyed.

FFig. 4 has been drawn to show the manner in which the rise of
pressure varies with the net head. The results shown by the curves
in Tig. 3 are plotted for a given duration of closure, ordinates repre-
senting excess pressure, but abscissas representing net head ().
Tt is thus seen that, for a given duration of elosure, the excess pressure
becomes less as the head inecreases, until at a eertain value of H  the
minimum rise of pressure is reached, and, as H continues to inerease,
the rise of pressure also increases until it reaches a final value, when
H, is infinite. In the example shown in Fig. 4, I, is only 820 ft., and
this length would represent the limit of gravity head. The curves,
however, have been extended for higher heads, on the assumption, of
course, that the head is produeced by applied pressure. The correspond-
ing curves obtained from the results of the Allievi, Warren, and
Vensano formulas are also clearly shown in Fig. 4.
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Rise of Pressure, in Feet.
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Pressure-Tine CUrves.

The pressure-time curves, Figs. 5, 6, and 7, show clearly the changes
in pressure that take place during the closure of the gates under various
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formulas of Allievi, Warren, and Vensano have been shown in these
figures for the purpose of comparison with those of the writer, and in
order -that the various results may be studied and explained. In some
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cases velocity-time curves have also been drawn, in order to show the
variable rate of retardation caused by uniform gate closure.

It will be noted first that Mr. R. D. Johnson’s pressure-time curve,
based on Allievi’s formula, or indeed Allievi’s formula itself, gives
the maximum pressure rise always at the end of the closing time. Mr.
Warren’s curve shows the excess pressure rising uniformly to a maxi-
mum at the end of the first interval and then remaining constant until
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the end of the closing time. Mr. Vensano’s curve shows the excess
pressure rising uniformly to a maximum at the end of the first interval,
falling uniformly to zero at the end of the second interval, and
repeating this vibration until the end of the closing time. The writer’s
pressure-time curves may be similar to any one of these three, depending
on the duration of closure and the net head acting on the orifice, or
on both of these faetors.
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Commencing with Fig. 5, it is seen that the pressure-time curve,
under the conditions stated, is almost identical with that given by
Mr. R. D. Johnson, as far as can be detected by the eye. A ecareful
consideration of the writer's formula, however, will reveal the fact that
the pressure-time curve obtained from it is not continuous, but is made
up of a series of curves, each being one interval long, and cusps or
changes of curvature occur at the end of each interval. Under other
conditions, the cusps are plainly visible, as, for example, in Figs. 6 and 7.
For any finite conditions, these cusps, theoretically, do not disappear,
that is to say, the tangent at the end of one interval never exactly
equals the tangent at the beginning of the next interval. Furthermore,
the slope at the beginning of the writer’s curve is never exactly the
same as the slope of the Johnson curve. For all practieal purposes,
however, the pressure-time curves shown in Fig. 5 (and numerous
other curves for similar conditions) are alEnc-st identieal, and the maxi-
mum pressure rise occurs in both of them at the end of the stroke.
This is interesting because the two theories from which the Tespective
formulas are derived are totally different. When the conditions are
such as to produce practically identical pressure-time curves similar to
the foregoing, it indicates that the effect of the compressibility of water,
the elasticity of the pipe walls, and the resulting harmonie vibrations
in the water column may be neglected, and in such cases the assump-
tions, on which the Allievi formula has been based, are practically
sufficient. '

The results obtained from the Warren and Vensano curves are
much at variance with the foregoing, as indicated in Fig. 5, and the
writer i$ of the opinion that neither of these formulas can apply for all
values of H,, and, only under certain conditions, which will be men-
tioned later, are they approximately correet.

As shown in Fig. 3, the maximum pressure rise given by the writer’s
formulas, as would be expected, is nearly always less than that given
by the Allievi formula when the duration of elosure is short and when
H,
iz _
of head to %elacity destroyed is large, the reverse is the case, and, when
H, becomes infinitely large, the writer’s formulas agree with that
of Mr., Vensano and give results twice as great as Allievi’s formula
for any finite duration of closure greater than one interval. Even

; the ratio of head to velocity destroyed, is small. When the ratio
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when the values of maximum pressure rise, as given by the Allievi
formula, are in close agreement with those of the writer, both for
short and long durations of closure, the respective shapes of the pres-
sure-time curves may be different. Figs. 6 and 7 show clearly the
characteristics of the 1}1'essu_re—timu.ﬂurves in a number of typieal
cases, and a close study of them, tagetheﬂ: with Fig. 4, will make clear
the relation that exists between the rise of pressure and the met head
for any velocity destroyed. The shapes of the pressure waves that
continue after the gates have been cloged, until damped out by friction,
are also indieated in Figs. 6 and 7.

Referring now to Fig. 7, 1t will be noted that the particular case
when Mr. Warren’s formula gives approximately correct results is when
the head is such that the rise of pressure due to gate closure is a

3 al
(e
ey

Fig. T shows, also, the shapes of the pressure-time curves for various
heads, and indieates the variation in time when the maximum pressure
oceurs during closure.

The :furlugr_:ing; examples, except Tables 2 and 5, have all been caleu-
lated for uniform gate motion. As the writer’s formulas may be applied
for any variable rate of gate motion, it is interesting to determine the
nature of the gate motion for various heads that would be required to
produce diagrams similar to those proposed by Messrs. Warren and
Vensano. A diagram of the shape proposed by Mr. Warren may be
produced by the simple expedient of increasing the speed of gate travé_]
at the end of the first interval to double the rate of its motion during
the first interval and maintaining this double rate until the end of
the stroke. Such an operation, though giving the same shape to the
pressure-time diagram, will not give, of eourse, the same rise of pressure
as for the same duration of uniform eclosure, but the latter 1s given
by a gate motion similar to that shown in Fig. 9. If a pressure-time
dingram of the same shape as Mr. Vensano’s is desired for a low head,
a very complicated gate motion would be required, such, for example,
as that shown in Fig. 8. In a similar manner, the gate motion required
to produce any suggested form of pressure-time curve may be deter-
mined.
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The manner in which excess pressures vary from gate to origin has
been explained ' in Miss: Simin’s translation of Professor Joukovsky’s
paper, although therein worked out on the erroncous assumption of
uniform retardation of the velocity of the water flowing in the pipe.

O. V. Kruse, Assoe, M. Am, Soe. C. E., who was associated with the
writer at the time this paper was first written, has made an original
study of the variation in excess pressure from gate to origin, based on
the writer’s application of Joukovsky’s theory to slow-elosing! gates.
The results of this study, which will appear as a discussion, together
with ‘other comments from him, prove “that when the duration of

. . 4 . -~
r. -"‘I fa e i 7: " - 5
uniform closure is less than ——, the maximum pressure is exerted along
i witvr e . ! - =
: : : S B L A
the pipe to a point where the distance to the origin is equal to 5

From that point to the origin the pressure reduces uniformly to zero.
&

When the duration of uniform' closure is equal to, or greater than, ——,
{1

the maximum rise of pressure occurs at the gate, and from there to the
forebay or origin reduces .to zero, uniformly along the leﬁgth of the
pipe. i _ _
. e FaLL 1y PrESSURE.

Professor: Joukovsky’s theory of pressure waves applies also to the
fall in pressure produced by opening a valve or gate at the end of a
pipe line, and the application of his theory to the case when a valve is
gradually opened may be made in a similar manner to the foregoing.
It is obvious, of course, that the fall in pressure caused by opening a
valve in a certain time is not precisely the same as the rise in pres-
sure caused by closing the valve in the same time, because the rate of
acceleration cannot be the same as the rate of retardation. It would
lengthen this paper unduly, however, to do more than state here that
the formulas for fall in pressure, may be obtained in a similar manner
to those given herein, the prineiples bcing' the same in both cases.

ExPERIMENTAL RESULTS.

The writer has not yet had an opportunity of testing the formulas
presented in this paper by experiments, to show, not only the correctness
of the values of maximum pressure rise, but also the shapes of the
pressure-time curves under various conditions, It is expected, however,
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that an opportunity of doing so may possibly occur in the not too
distant future. In the meantime this paper is presented in the hope
that it will receive criticism or confirmation from those interested in
the subject.

The experimental results obtained by Mr. Vensano, and presented
in his paper entitled “Pulsations in Pipe Lines”, give some striking
confirmation of the correctness of the writer’s formulas, not- only as
regards the maximum pressure rise, but also as indicating the resem-
blance between the caleulated and observed pressure-time curves, both
before and after the gate was completely closed, and at various points
along the pipe line, as well as at the gate* These, however, were
carried out under a very high head (1260 ft.), and could hardly be
accepted as a general proof.

The writer also proposes to show how the pressure-time diagram
may be used to determine the velocity of flow in a pipe, for the purpose
of measuring the rate of discharge previous to the closing of the gate.
This will be made the subjeet of another paper to be written at a
future time.

In conclusion, the writer desires to accord eredit to Mr. O. V. Kruse
for the valuable help he has given in the preparation of this paper, to
Mr. R. L. Hearn for the work of preparing Figs. 8 and 9, and to Mr.
R. D. Johnson for the many helpful suggestions he has kindly made.

* See discussion by Norman R. Gibson in Transactions, Am. Soe. C. E,, Vol
LEXXXII, p. 236.
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DISCUSSION

Orro V. Krusg,* Assoc. M. Awm. Soc. C. E. (by letter).—The
writer has studied the phenomena of water-hammer, and offers a short
analysis' of Miss O. Simin’s translation of Prof. Joukovsky’s notable
work, and an elaboration of certain parts of Mr. Gibson’s paper.

Any pipe under pressure and containing water in motion may be
assumed as a unit of energy under a condition of equilibrium. If we
wish to stop the column of water, it means the application of a certain
- amount of force during a certain time to bring about the conversion
of energy and restore the equilibrium. In analyzing the phenomena
which take place, the writer believes that the most important point to
study 1s the rate of destruction of velocity as affected by the net head,
because this determines to a large extent the rate of pressure rise and
hence the maximum pressure rise. Apparently, Allievi used this as a
basis for the development of his formula, and this, of course, applies
to Johnson’s formula, which is the same as Allievi’s. Any formulas,
such’'as Warren’s and Vensano’s, which do not take this into account
must be incorrect, except for one set of conditions. The curves given
by Mr. Gibson show how far from the truth they may be.

In accordance with the ordinary methods of integration, it may be
considered that the gate movement throughout the duration of the
stroke is made up of an infinite number of small instantaneous move-
ments. In the case of the formulas of Allievi and Johnson, which
involve the dynamic forces, each little movement of the gate produces a
pressure: '

_Ldv
~ gadt

~ The conditions exist-iﬁg, then, at the end of any small movement
are;
1. The original veloeity has been decreased by the amount of the
velocity destroyed during this first movement;
2. A dynamic pressure has been created, due to the destructmn of
velocity.

A new velocity now exists, which is dependent, not on the original
net head, but on a new head made up of the original net head and the
dynamic head. As brought out by Mr. Johnson, these curves of dynamiec
pressure rise and decrease in veloeity may be caleulated by a.simple
LW L dv
gdt’
The Allievi or Johnson formula will give a figure for maximum pres-
sure rise, and Mr. Johnson has also developed a formula for the shape

* Philadelphia, Pa.

method of arithmetic integration, using only the relation, h =

Mr.
Kruse.
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of the pressure curve, these formulas giving the same results as ean be
obtained approximately by arithmetic integration,

The question to be considered now is: To what extent, and how, do
the compressibility of water and extension of the pipe walls affect the
pressure and velocity curves? We know that, as the time of closing
grows shorter, the Allievi formula approaches infinity. On the other
hand, Joukovsky proved that the maximum pressure which' obtained
for instantaneous closing depended on the veloeity destroyed and the
speed of propagation of the pressure wave, and could not exceed
“maximum water-hammer.” It is not difficult to see that, for a long
closing time, the compressibility of the water and extension of the pipe
walls have very little effect on the maximum pressure, but; as the time of
closing grows shorter, the properties of the materials have a greater and
greater effect. The writer believes that Mr. Gibson’s formulas have
successfully supplied this missing gap between Allievi’s and Joukovsky’s
theories, and serve to give correct resulis for all conditions,

Professor Joukovsky made a great many experiments to determine
the magnitude of maximum water-hammer and the speed of propaga-
tion of the pressure wave, all based on instantaneous .closing of the
gates. The details of the experiments will not be given here, but the
following is a synopsis of the theory, taken verbatim from Miss Simin’s
translation: '

“In Fig. [10] let A B be a pipe, in which water flows with velocity,
v, from the origin A, past the gate, B. If, now, the flow is suddenly
stopped by a rapid shutting of the gate, B, the kinetic energy of the
water column, A B, will cause an increase of pressure in the pipe.

“Let us consider the eolumn of water, A B, as divided into n very
small equal sections, 1, 2, 3,....(n — 1) and =.

“The phenomena of water-hammer take place in a series of eycles,
each consisting of four processes, as follows: : .

- (1) Section 1, meeting, in the zate, an obstacle to its movement,:
will be compressed and will streteh the pipe wall surrounding it. *All
the kinetic energy of this section of water will be used up (a@).in its
own compression, resulting in the increase of pressure by an increment,
P, and (b) in the corresponding stretehing of the walls in section 1 of
the pipe. As a result of this action, seetion 1 of the water column has
left vacant behind itself a small space, to be occupied by a part of the
next arriving section 2. Consequently it is only after section 1 has
been stopped and compressed, and after the small space thus left has
been filled, that section 2 can be arrested and compressed. A

“Now the kinetic energy of section 2 must be expended in some
way. Will it increase the pressure upon the gate, which has already
been caused by the arrest of seetion 1? No, and for the following
reason : g b

“The pressure upon the gate depends entirely upon the pressure, P,
sustained by section 1, which is now in static condition. "

“The pressure upon the gate could therefore be increased only if
section 1 could be further compressed, and this could take place only
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if the pressure upon the surface between it and section 2 (which we Mr
‘may imagine to be a thin piston) could be greater from the side of Kruse.
section 2 than it is from the side of section 1; and this iz impossible,
because section 2 has only the same kinetie energy as seetion 1, and

this energy will (as in the case of section 1) be used up entirely in
compressing the water of the section (section 2) only to the same addi-
tional pressure, P, and m streteching that part of the walls surrounding
gection 2.

“The same is true of each following section, 3, 4,.... {(n — 1) and
n; each of these sections, as it is arrested, being compressed to the
pressure, 7.

“During process (1) a small quantity of water flows from the
reservoir into the pipe, to oceupy the spaee formed by the compression
-of the water and the extension of the pipe walls.

“Finally, when all the sections have been arrested, the entire
ecolumn will be under the pressure, P. The entire energy of the water
column is now stored (as potential energy) in elastic deformation,
viz., in the compression of the water column and in the extension of
the pipe walls.

1283 d cm—em—e —— e e T RN AR
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Fig. 10.

“But this condition eannot be maintained; for

“(2) As soon as-the additional pressure, P, has been produced in
the last section, n, the water in that seetion will again expand, and the
walls of that seetion of the pipe will again contraect, restoring the
original conditions in that seetion, and pushing the water of that
seation back into the rc:er'-;'nir from which the pipe i1ssues, and restoring
the original normal pressure in seection n.

“This operation will now be repeated by each section (n — 1),... .4,
3, etc.,, in turn, until all the potential energy, stored in the wator
cnlumn when it was under the pressure, P (neglecting the portion 1n~t
in friction), has been reconverted into kinetic energy.

“Dunng process (2) the water which entered the pipe during
process (1) is foreced back into the reservoir.

“The condition of the water column is now what it was just before
the gate was closed, except that its wveloeity, v, has now the opposite
direction, 1. e., toward the origin.

“(3) The kinetic energy of the water eolumn, moving toward the
origin or away from the gate, is now reconverted into potential energy,
which manifests itself in an extension of volume of the water to a
subnormal pressure beginning with seetion 1, and eoneluding only when
the entire water column has been reduced to the subnormal pressure.

“During process (3) water continues flowing from the pipe into
the TeServoir.

“(4) When the subnormal pressure has been established thrnugh-
out the length of the pipe, and all the water has come to rest, the
water from the reservoir will again direct itself into the pipe, restoring
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the normal pressure, first in section n, next to the reservoir, and then,
in rapid succession, in the other sections (n — 1),....4, 8, ete., until,
when the normal pressure reaches the gate, we have once more the
conditions which existed just before the gate was eclosed, viz., the
normal pressure is restored and the water is moving toward the gate
with the original velocity, v.

“We have now followed these pulsations of pressure (with the
accompanying transformations of energy and flow of water into and
back from the pipe) through a complete eyele of four movements,
each extending through the length of the pipe. For convenience, we
may consider two successive movements of this kind as a ‘round trip’
through the pipe.

“The gate remaining closed, the whole process is now repeated in a
second eycle, which, in turn, is followed by a third, and so on, the
amplitude of the pressure vibrations gradually diminishing (because
of frietion) until the pipe and the water come to a state of rost,

“But although the intensity of the pressure becomes gradually less,
the time required for each eyele remains eonstant for all repetitions.

“This propagation of pressure, consisting of its transmission
through all points of the length of the pipe, each point successively
repeating the same periodieal movements, is, in its nature, simply a
case of wave motion, like that of a sound wave.

“The veloeity of wave propagation is independent of the intensity
of the pressure, and depends only upon the properties of the medium
through which the propagation takes place—in the ecase of water-
hammer, upon the elasticity of the water and of the pipe.”

Mr, Gibson has applied this theory to slow-closing gates by con-
sidering that each infinitesimal movement of the gate 18 1stantaneous
and produces a small rise of pressure which travels through the pen-
stock in the saine manner that a wave produced by total instantaneous
closing would travel. These small gate movements oceur in succession
and produce in turn their pressure waves which travel back and forth
through the penstock, An algebraic sum of these waves gives the rise
of pressure existing at any time during the closing stroke.

The writer is of the opinion that the pressure existing throughout
the length of the pipe for a slow-closing gate varies almost direetly from
a maximum at the gate to zero at the point of relief, except where the
time of closing is lass than 21:5

In Fig. 11, the pressure existing at four points on the penstock has
been plotted. The magnitude of the individual pressure waves is not
to scale, but their values are shown for the particular example taken.

ie L i ;
The pressure existing at a point -~ from the gate is approximately

one-half the pressure existing at the gate. The pressure existing at a
8 L : -
point S from the gate is approximately one-quarter of the pressure

existin  at the gate.
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The diagram showing the pressure existing at the point of relief
consists of a series of instantancous rises above normal. On account
of the assumption of twelve instantaneous movements of the gate,
the pressure at the point of relief must of necessity show twelve
ingtantaneous rizes of pressure, as each wave travels undiminished to
the point of relief. If twenty-four instantaneous movements were
chosen, there would appear twenty-four instantaneous rises of pressure
in the game time, but of only about half the magnitude. Fenece, in the
limit of an infinite number of instantaneous movements of the gate,
or uniform slow-closing, the pressure at the point of relief becomes
zero. . This must be true, because the duration of time of any rise of
pressure at the point of relief i1s zero. Wherever rises of pressure
have actually been recorded at the point of relief on a penstock, they
are probably due to an instantaneous movement of the gate during
the stroke, or to some other caunze, such as a sudden elastie dcfﬂrmatmn
of the waterway, which would have the same effect.

In the translation of Professor Joukoveky’s work there are shown

tables of presgure rises at different points on the pipes for different

veloeities destroyed. In every case the pressurs waves travel practically
undiminished almost fo the point of relief. The readings taken at the
station nearest the point of relief, however, show a reduetion in pres-
sure of from 60 to 80 per cent.. This is very significant to the writer,
as an indication that the pressure traveled undimimished to a certain
point and then gradually was reduced fo zero at the point of relief.
Although Professor Joukovsky experimented with very rapidly closing
gates, ag nearly instantaneous as possible, obviously a certain fraction
of a second must elapse while the gﬂtc i3 closing. When the time of

closing is less than one interval, , the resultant pressure will travel
e

R : o Tl ;
undiminished to a point which is i in feet, from the point of relief

{(where 7' is equal to the closing time, in seconds). TFrom this point
it will gradually be reduced to zero at the point of relief. Granting
that some short period of time must elapse during the closing of the
gates in Professor Joukovsky’s experiments, his actual pressure read-
ings seem to verify the writer's claim.

In the example tukl:n the duration of elosure is assumed to be
three intervals. The diagrams and curves have been plotted beyond
the three intervals to show the fluetuations of pressure which take
place after the gates are closed. Experiments should show that the
subsequent fluctuations after the gates are closed are quickly reduced
in intensity by internal frietion, but this frietion should have no effect
on the speed of propagation of the pressure waves. Internal friction
has of necessity been omitted in these computations, as it is an unknown
quantity. \
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~ Any other example than that shown by Fig. 11 may be chosen, and
the pressure waves may be computed by Mr. Gibson’s formulas. A
series of diagrams may then be plotted, similar to those shown by the
writer, and the pressures may be computed for any point on the
penstock.

- In making the eomputations for the magnitude of the pressure
waves, lt 18 necessary to determine first the number of intervals of time

: 2.5
(_equal_ to " E_) contained in the total closing time. The gate move-

ment may then be divided into a number of instantaneous movements
equal to the number of intervals. Computations earried out on this
basis will give correct points on the pressure-rise curve at the end of
each interval. In the event of the closing time being only a few inter-
vals, it is desirable to subdivide the gate movement further in order to
devélop the curve during the intervals, Tt is an interesting fact, how-
ever, ‘that such further subdivision of gate movement serves only to
develop the shape of the curve during the intervals, and has no effect
on the values at the end of each interval. In making studies of this
character, it is often easier instead of using Mr. Gibson’s formulas, to
utilize the system of arithmetie integration, which will give correct
results, although involving trial-and-error methods.

In ordér to compute the pressure-rise curve at points on the penstock
other than at the gate, the gate movement must be divided into a
number of divisions sufficient to eause the pressure waves to overlap.
Thus, at least two divisions per interval must be used to compute the
curve at a point half way up the penstock, at least four divisions per
interval for a point three-quarters of the way up the penstock, and at
least eight divisions per interval for a point seven-eighths of the way up
the penstock. Referring to Fig. 11, where four divisions per interval

were chosen, it is obvious that the pressure beyond the point, T'f
from the gate, cannot be computed without a greater subdivision
of the gate movement,

In this discussion the writer has endeavored, prineipally, to point
out the trend of argument and application of existing data used in
proving the theoretic correctness of Mr, Gibson’s method of handling
water-hammer problems. The method seems to be fundamentally
sound, and deserves the careful thought of engineers.

Evcexe E. Hanvmos® Esq. (by letter).—Ever since the publication
of the papert @ntltled “Penstock and Surge-Tank Problems” by

Minton M. Warren, Assoc. M. Am. Soc. C. E., the writer has hoped
that some one, preferably a member of the Somet:,f,: would point out

- [ﬂ:algnlng Engineer, Barclay Parsons and Klapp, New York City.
i Transactions, Am, Soc. C. B.,, Vol. LXXIX, p. 238,
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the injustice done to one of the greatest hydraulic engineers of the
present age by the form of, and the comments appended to, Mr.
Warren’s presentation of what he termed “Alliévi’s formula.”

Unfortunately, Mr. Warren has not been corrected. This formula
was accepted by American engineers as representing Alliévi’s solution
of the problem of water-hammer in pipe lines, and, consequently, it
has been severely eriticized and misinterpreted.

The value of Mr. Gibson’s excellent paper is also seriously impaired
by the references, both in the text and in the diagrams, to “Alliévi’s
formula” as taken from Mr. Warren’s paper, and the writer would
suggest that, after perusal of the following, Mr, Gibson omit all refer-
ence to Alliévi, except to state that his solution agrees, in every particu-
lar, with that of Alliévi.

The writer proposes to submit a brief summary of Mr, Alliévi’s
formulas, which, in his judgment, represent a complete solution of
water-hammer problems as regards determination of the pressure at the
gate or at any other section of the conduit, at any instant, and under
any conditions of closure and physical characteristics of the plant.
It is more general than Mr. Gibson’s solution, inasmuch as it also
includes the determination of the pressure variations after the stopping
of the gate movement, and as it gives a method of estimating the
interval in which the pressure maximum will ocecur.

As the present paper and the previous ones deal almost exclusively
with the case of water-hammer during the closure of gates, and with
the variation of the pressure at or near the gates, the writer will only
quote Alliévi with regard to formulas applicable to such cases. The
writer, however, intends to translate Alliévi’s book into English, which,
it is hoped, will be of great help to designers of hydraulic plants and
apparatus.

In the following, the formulas representing the relation of time and
pressure are given for three phases, namely:

2 L
the first phase, for which ¢ i T;

2 L
the second phase, for values of ¢ beginning with ¢ = o and end-
ing at T';
and the third phase, ¢t > T.

Notation.—
‘@ —velocity of propagation of pressure along pipe;
¢, = uniform velocity of water in pipe before beginning of gate
closure; :
(' — variable velocity of water in pipe at any instant during gate
closure; :
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1, = uniform velocity ‘'of water through gate orifice before begin-
ning of closure;

u = variable velocity of water thrnugh gate orifice during gate
closure;

f ==time, in seconds, recorded from begmmng of gate movement;

T = duration of gate movement, assumed to be mntmuaua,

L = length of pipe conduit; :

¥, = pressure head on pipe line at gate before closing begms,

y = variable head at gate due to'closure.

A.—GeNERAL ForMULAS.
(1) Variation of Pressure Head During and After the Closing
Motion of the Gates.—
2 L
First phase, ¢ { R
For this interval, i:he pressure head, y, at any instant can be com-
puted from the equation

2 ﬂ;
y—ﬂy(ﬂ—l— “*"'())Tﬂ-mﬂ ...... it (1)
in which e yﬂ+%

and ¢ (¢) is the ratio of the instantaneous area of discharge to the

(assumed) constant area of the penstock, that is, ¢ () = ( e ;1_ )

the value of # (¢) being taken at the instant for which the

o
'\/29‘ Uy

pressure head, y, is calculated,
It will be noted that if the gate is closed in a time, 7' E E, P (1) =0,
g

and the equahﬁn reduces to
4t — 9 IIy + H: = 0

a.ﬂ
y:ﬂ'_yﬂ-{-——!}— ..................... (2)

which shows that in such a case the maximum pressure head is inde-
pendent of the actual length of the time of closure,

Of the two roots of Equatmn (1) one is greater, the other is smaller,
than H. This latter is the true value of the pressure head at any
instant,

2 L
mSecond phase, S i ti d £

Mr.,
Halmos.
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- During this period of the gate movement, the following equation
applies for the determination of the pressure head at any instant:

yﬂ—ﬂy(H—2f+fi;(9)+(}f—2f)?_=ﬂ ...... (3)

Of the two roots of Equation (3), that giving the smaller value should
be used.

It will be noted that this equation differs from Equation (1) only
in so far that, instead of H in the latter, (I — 2 f) appears in Equa-
tmn (3).

The values of the funetion, f, should be determined in the following
manner:

o pe e : Talipl)
For the interval, 0 < ¢t < e Yy —y, = F (1), v being calculated
L - i
from Equation (1). s

The velocity, C, in the conduit (at the gate) can be computed from
the equation

gl g
g
for this interval. d
2 L 4 L 2 L
For the interval, —— < ¢ “'5: ,f — I (t——); in other

words, the values of F (t) found in the first interval should be substi-
tuted for f in Equation (3) to obtain the value of y for every subdivision
of the second interval. Then, the corresponding values of the velocity,

C, may be found by y 4 % C=H—2 f,and the value of F (t) for
the second interval by F' (t) = —ﬂ’— (cg— C) — 1.

41,
For the third interval, — < ¢ {T the values Df F (t) so found

fc-r the subdivisions of the secand interval should be substituted for f in
Equation (3) to get y, and so on, for all subsequent intervals until the
gate has stopped moving or has becnme entirely closed.

Third phase, t > 7.

If the nmumant of the gate is stopped at an instant such that

2 L 2 L
e : , the pressure head, v, remmus constant untilt = ——. From
L (L
= : : _ 2T
this instanf on, or from the time of the stoppage,in the case,t, > ——,
35 Vs o

there is developed a hydrodynamic phenomenon in the form of an
asymptotical approach of the pressure head, y, to the new constant
head, ¥,, of uniform flow. There are three different cases.
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- by T+ Wy f :
First.—If ¢ ¥ () > ° 5 !, in which case y approaches Yo Without

oscillations.

Second.—If a ¥ (t,) < u, + u

..l

2
through oscillations of diminishing amplitude.

Third.—If the gate is entirely closed, # (¢,) = 0, the pressure head
(disregarding the dampening effect of hydrodynamie friction)
oscillates indefinitely, with a constant amplitude, between
the value of y, which ocecurs at the instant of closing, and
2 4y, — ¥, the amplitude being v, — y,.

, in which case y approaches y,

(2) FEstimating the Phase in Which the Maximum Pressure Will
Oceuwr.—Assuming a linear closure of the gates:

(@) If ac, < 2¢ e,.rﬂ, then the pressure head at the end of the first

- ®
phase (L = — ) will always be greater than the average max-

imum pres-ssuu, (fmtml by Equation (4)) occurring during the
second phase,

(b) If 29 ¥, < @aey, < 3¢y, the maximum pressure head occurs
either at the end of the first phase, or during the second phase,
according to whether the closing time, 7', is smaller or greater

L ac—gy, L

(O 0 e
(¢) If @ ¢, > 8 g y, then the maximum pressure will always occur
' during the second phase and will be greater than that at the
end of the first phase.

Fquations (1), (2), and (3) are the general formulas derived by
Alliévi, by the help of which complete pressure-time curves can be
worked out for any assumed conditions of 7', L, a, ¢, and y,. The
writer is very much pleased to state, that, by the use of these equations,
he was able to check aceurately all the curves presented by Mr. Gibson.
He wishes to compliment the author in having found, quite inde-
pendently, and by a simpler mathematical method than Alliévi’s fune-
tional derivation, the correct formulas for the representation of pres-
sure-time curves and related phenomena.

B.— Speciar. ForMULAS.

It has been found by experiment, and by working out pressure-time
curves for a great number of cases actually met in practice, 111-11‘ on
the assumption of linear gate closure:

(d) The pressure behind the gate remains practically constant for
2 L

i t ‘::: T (y is not a function of time or e 0 between

M.
Halmos.
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Mr. these limits) and, therefore, for this period, the pressure is inde-
RO pendent of the elastic qualities of the water and the conduit, in
other words, independent of (a);
(¢) The pressure is distributed in a linear way along the pipe ;
(f) The velocity of the water, U, is the same at any instant at any

section of the conduit (—- =0
Taking into consideration the observations noted under (d), (e), and

(f), a good average value of ¥ maximum during the second phase can be
obtained by solving the equation

vl A R A B e e (4)
1 ¢, L
where 7= ‘_’!?!“_'.*.'-E'- and n = :'1 r
o g 1y,

This equation is identical with Hquation (C) in Mr. Warren’s paper.
[u order that it should be valid, it is necessary:
&

2
(1) That 7" be greater than -TJ ,

(2) That the gate movement (the rate of reduction of the area of
the outlet) be a linear function of the time;

(8) That, in case of partial closure, that value of 7' should be used
which would be obtained if the gate should be completely
closed at the same rate of speed;

(4) That the physical dutn, a8 L, a, y,, and ¢;, shall conform to
those ordinarily met in pnmtu,e

In order that Equation (4) should produce the maximum pres-
gure head obtaining during the whole movement of the gate, it is
necessary that a ¢, shall take the values defined under (b) and (e).

It is evident that Mr. Warren committed a serious error by omitting
the publication of Alliévi’s general Equations (1), (2), and (8), and by
omitting the proper definition of Equation (4) and the limitations of
its applicability as defined by Alliévi.

The only ambiguity which may occur in using this formula is the
lack of a better definition of Condition (4). This is extremely difficult,
on account of the great number of variables entering into the problem,
The writer, however, proposes, without being able to give striet ana-
Iytical proof at the present time, that Equation (4) should be used
only, if

Lc,n \]u cﬂ - ,'
) — 13 and,
(G AP Vo g 7

(B) wcy>29Yy,
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As L, ¢, a, and y, are dependent on rather unalterable physical con- .
ditions, if Condition () is satisfied, Condition («) can be fulfilled by Halmos.
determining 7' according to the proposed formula. :

If, besides Conditions («) and (8), Conditions (b), (e}, (1), an
(2) are also fulfilled, Equation (4) will give the absolute maximum
head at the gate during the movement of the apparatus.

It will be found that,

V4

for ¢,

10 ft. per sec,

Wy between 100 ft. and 500 ft.

11

v |l

6 intervals,

all the foregoing conditions are fulfilled, which means that, in most
practical cases, Equation (4) aectually furnishes the maximum pres-
sure head at the gate.

If the elasticity of the water and the conduit is neglected for the
whole time of the movement of the gate, then, for the conditions for
which Equation (4) is applicable, the pressure-time curve can be
platted from the equation:

{ »\f Uo" + Up? -+ U — U Ja)( !\/ Uy + Up® =— U i u)
(N’u.‘f 4+ up? —u + w,_q)(&/uﬂ’ - Rt 4wy — uﬂ)
N ug? + ug i

It g
P Yo log.

i i el S LS ©)

- -T - w - 1) ]
in which u, = K —;,;T, where I is the ratio of the area of the gate opening

at t = 0 to the area of the pipe, and
vy =N TG0« = N TG,

This eurve will have a maximum at { = T' if Conditions (b) and (c)
are fulfilled, and will have a practically horizontal position in the second
phase if Condition (a) is observed. It will differ very little from the
true curve of pressure variations, and is applicable to practically the
whole range of actual water-power problems.

It will be noted that ILquations (4) and (5) are identical with Equa-
tions (6) and (7) given by Mr. R. D. Johnson in his discussion® of
Mr. Warren’s paper. Great credit is due to Mr. Johnson for having
grasped correctly the essential features of this difficult subjeet, and
for his wonderful mathematical skill in solving by independent methods
the intricate problem of water-hammer,

In eonclusion, the writer wishes to observe, that it would be desirable
to encourage the use of Alliévi’s, Gibson’s, and Johnson’s formulas for
"~ s Transactions, Am, Soc. C. B, Vol. LXXIX, p. 280.
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water-hammer, and to reject and discourage the use of other formulas,
gsome of whieh, such as Mr. Warren’s, are never true, not even acci-
dentally. :

R. D. Jouxson,® Esq. (by letter).—DMr. Gibson’s remarkable paper
deservea the closest attention on the part of all who are interested in
the water-hammer problem. ' ;

He remarks that the theory has not been experimentally confirmed,
but it is so obviously complete and correct as scarcely to need such
confirmation to establish strong faith in its accuracy.

The writer has been especially interested in a completely correet
treatment ‘of this subject, in order to be able fo fix the limits of K
within which his pressure-time curve, previously presented to the
Society, is sufficiently accurate for practical purposes. _

It is found, fortunately, that this smooth curve,t log. & = nlog. T

is applieable with much precision to such a wide range of conditions as
to justify its use for practically all the water-hammer problems arising
in connection with the design and operation, under ordinary heads,
of water turhines, when properly regulated. :

By differentiating Mr. Gibson’s equations, it is possible to express
rigidly correct values of the tangents to the true pressure-time curve
at (a), the beginning of gate closure, (b), the end of the first interval,
and (¢), the beginning of the second interval.

Using Mr. Gibson’s nomenelature, with omission of subseripts, that
is, putting B, = I, and Sy = S, and H, — H, these tangents may be

expresged as follows:

X i
00 S e B T |
pan Loy a0 Byl T, '~§f3R+EH-;1
DS T ETE | N B G AR  AE)
s __HWTT?HEH/+U+2RF73_{ %U
e e N S(S+4R+4H)
| 4HET
where Z =: .

(H+2HNT”TE
It is ch,u,r that the effects of vibration in the water cnlumn, due to
elasticity, tend to disappear when the condifions are such that tan. (b)

and tan. (¢) approach equality; also, if the change in the rate of pres-
sure rise at the begnmm,-: of the second interval, due to the effect of

# New Yurk ity.
+ The derivation of this curve, Equation {T) is glven In Tfm?.scmaimw, Am, Soc.

. B, Vol, LEXIX, p. 280,
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the returning wave, is less than the rate at which the pressure begins

to rise when the gate starts to move, it is evident that the conditions:

are such that the effect of elasticity is rapidly dying out, and that it
should be searcely appreciable during the remainder of the closing
period.

If, then, tan. (b) — tan. (¢) < tan. (a), the writer’s Equation (7),

above referred to, or the maximum value of h, given by the so-called
Alliévi formula, may be used with much precision.

Thiz may be shown to be the case when,

2
K e T L TR S R 1
M3 11 &
- = ., I'—T R
‘where ris the ratio, ﬁ—-j;—' and R — I

Formula (1) marks the lower limit for values of K, below which it
is not safe to use Equation (7). To find the upper limit of safety, for
values of K, it is noted that, as H decreases, the pressure-time diagram
passes through a transition stage where an ogee form of curve most
closely approaches to a straight line, and, that thereafter, as H con-
tinues to deerease, Equation (7) begins to produce a curve sharply up-
turning and curving one way, for the most part, as its extremity
reaches toward infinity, thus leading to serious errors in its resulfs.

By trial, assisted by arithmetie integration, it has been noted that,

for large values of n, the head may be reduced to about one-half the
value which produces the approximate straight-line diagram.
. To find this point we may equate the value of A,,, in the so-called
Alliévi formula to the value of the pressure rise found at the end of a
straight-line pressure-time diagram, enclosing the same impulse area,
and solve for the value of H. :

In this way it is found that

FA= g iU st (T Sion el oy, i, (2)

(where n is the closing time expressed in intervals;, and Equatmn ()
may be used so long as

K = or {

whieh, for large values of n, is nearly twice as great as the value given
by Formula (2), but which becomes equal to 3, as it necessarily must,
when n becomes unity.

. Formula (3) marks the upper limit for values of K, above which it
is not safe to use Equation (7). Therefore, the smooth logarithmic
ourve given by Equation (7) may be applied only when K lies between
the values given in Formulas (1) and (3), and preferably, also, when
n is not less than three intervals,

Mr.
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Fig. 12 shows that Equation (7) covers a very wide range of condi-
tions, and, furthermore, in the design of a water-turbine installation, .
the values of ¥ and n should, when possible, be adjusted so that Equa-
tion (7) will be correctly applicable; and particular attention should
be given to the limitations set forth in Formulas (1) and (8), in
order that the speed of the water unit may be regulated most effectively.

The expressions  for the tangents, (a), (b), and (¢), are rigidly
accurate, and form a substantial basis for further possible study: for
example, if tan. (¢) be equated to zero, the limiting value of n may be
found when the maximum pressure rise occurs at the end of the first
interval. This iz thus found to be the case, always, when

4 K*4-8 K ;
I e SR o olaus A1l eh i )

It is seen that this expression is positive and finite only so long as
K < 2; therefore, &* must always be less than 2, in order that the
maximum rise shall oecur at this point. It does not follow that this
will be the case merely because K < 2, unless Formula (4) also applies.

In support of Mr. Gibson’s work by experimental observation, it
may be pointed out that mueh information is available for cases which
oceur within the limits here set forth, and, inasmueh as his complete
work incidentally includes such cases, it may safely be predicted that no
error in theory will be discovered by experiment.

The writer, himself, has confirmed Equation (7) a great many times,
under a variety of conditions, in the past twenty years, and, because
of such confirmation, he was not led, from practical necessity, to a
more thorough investigation of the theory.

In conelusion, the writer wishes to urge those interested to a further
study of the limits here graphiecally presented, with the idea either of
confirming or improving them, because it is not profitable to resort
to the very tedious processes incident to the methods presented by
Mr. Gibson, except when a comparatively simple formula is inap-
plicable. The chart, Fig. 12, indicates that this is very rarely the

-case, and practically never need be, with proper eare in the design

and operation of any water system.

It is interesting to mote that Mr. Gibson’s methods may be used
to work out a system of perfectly general cases, thus enlarging, indefi-
nitely, the scope of such diagrams as he has presented, ‘which are based,
merely, on a specially selected set of data.

This is made possible by simply substituting in his scale of ordi-
nates, values of the ratio (k,,.) = H in place of (h,,. ), and sub-
stituting for the values of H, written on the curves, the values of K.

This trifling change, it will readily be seen, will make such dia-

grams applicable to an infinite variety of special cases.



In this manner, the chart, Fig. 13, has been roughly prepared, and,

DISCUSSION ON PRESSURES IN PENSTOCEKS Y%

for the range of values covered, it is not necessary to resort to formulas.

_ All combinations of @, ¥, and H which produce a constant value of
K must invariably result in a definite single value of the ratio

4 234567 89510 20 30
35 .._i__.._. - : - |
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e e — ]
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CHART OF LIMITATIONS
FOR WATER-HAMMER PROBLEMS

012345867
Values of 1

8 910

20 30

Fie. 12,

(Rmaz) — H for each selected value of n. Therefore, in fact, each
point of the chart covers, theoretically, an infinite variety of con-

ditions.

Mr.
Johnson
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0 - In the use of the c:hart or simple formulas to replace the acecurate
" but tedious methods, it should be borne in mind that it is not ordi-
narily practically necessary that the agreement should be perfect,
because, as Mr. Gibson has shown, the shape of the curve is so sensi-
tive to the vagaries of the gate motion, in closing, as to make it almost
ouf of the question to reproduce, experimentally, any definitely selected
shape of curve; so that, after all, the element of judgment must enter,
as usual,

WATER-HAMMER CHART FOR UNIFORM GATE CLOSING.
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The effects of velocity head and friction head have been neglected
in the preparation of Figs. 12 and 13. These factors are nearly always
of minor importance, as affecting the rise of pressure, but, nevertheless;
they may be taken into account by means of arithmetic integration
in special cases where great accurdcy is thought to be warranted. These
effects, at any rate, cannot be included in a usable formula, covering
the whole range of the charts.

For the benefit of those who are interested in the phenomena of
water-hammer only sufficiently to desire a quick, comprehensive grasp of
the derivation of the various formulas from fundamental prineiples,
it seems worth while to present a simple analysis based on a straight-
forward hypothesis which has been generally accepted as applying
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to elastic eolumns, but which has not, so far as the writer knows, been  mr.
directly and clearly stated. This is attempted in the following LG
language:

When a varying presaure iz applied against the end of an elastie
eolumn, the change of velocity of that end, in the time required for the
pressure wave to traverse the length of the column and return, is
proportional to the arithmetic mean of the two pressures which there
exist at the two extremities of this “interval” of time; and the impulse

L

2
produced by the product of this average pressure and the time, ——,
a

15 equal to a change in momentum corresponding to the total mass of
the column multiplied by the change in velocity of its end, adjacent
to the point of application of the pressure.

This is a perfectly general statement applicable to any ‘*interval,”’

2L
—, of time during the acceleration (negative) of the elastic column.
«

If time is measured in “intervals” instead of seconds, we may write

2 L . 2 L : rs
TS X mn (intervals) — ¢ and == X N = T, where N is the total

number of intervals (either a whole or mixed number) required to
bring the end of the elastic eolumn to a state of rest, and n, also either
a whole or a mixed number, corresponding to any number of seconds, {.
With particular reference to a column of water arrested by the
closure of a gate, we may designate the instantaneous pressures (h)
abﬂv{ilnormﬂl (Hﬂ}, at the extremities of any interval of time during
closure of the gate, as h, , and h,, respectively, and may write the
general expression corresponding to the hypothesis (omitting the area
of the pipe, assumed econstant, and eancelling the common factor de-

noting the specific weight of the fluid), as follows:
by + By 2L L

= ¥V
2 a i (Va-

| SFEE -Fn)
or, more simply, ;

R o g % (7, SUOSy A AR 90 T 1)

This is the simple relation of which Mr. Gibson took advantage in
working out his arithmetic tables, and to which he refers at the end
of the paragraph on page 719.

During the first interval, ¥, _; becomes the initial velocity, ¥V, and
h, _ becomes hy = 0, so, for values of n equal to or less than unity (or

— L ]
for values of ¢ —) , We may write:
4

kg
<= (Vo= Va)ess o, (14)
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If the gate is completely closed in one interval or less, we have the
maximum possible rise of pressure; for, in that case, 77, becomes zero
and we may write:

B ek ol g7

THAE -
q

which ig the famous formula of Joukovsky.

Thus, it is clear how all these fundamental equations are derivable
from the one general hypothesis which, itself, reverts to the second
law of Newton.

Equation (1) ecomprises the essential features of the water-hammer
problem for fast or slow-closing gates, and a particular case may be
worked out for any known or assumed character of closure, with
respeet to time, by expressing the simple relation between the quantity

of water discharging at any time through the gate-opening exigting

at that time, and the total pressure head which drives the water
through it. For example, if ¢, represents the proportion, at any time,
of full gate-opening, the area of which is b, and the coefficient of dis-
charge is ¢, we have (neglecting heads due to velocity and friction),
@, he ‘V’rﬂm_m‘}_(jfﬂ - fi:-] = A VH ............... (2)

and PobeV 29 (H, + hg) =AV,=0be VBT (8)
where A is the area (constant) of the pipe.
Dividing Equation (2) by Equation (3),

e
Py vﬂ \’ L=t I?:. = ¥,

h
or, putting = = P

S . We have,
(] r———
Vo=, Vo/ 14 Ppecereiiniiiinninn. (4)
and ¥ y = P oye Bn v A I_"ﬂj ............... (5)

Subtracting Equation (4) from Equation (5),

Vin—~ B =W (@), VI PLTyd V/ 1 ok P,)....(6)

Thus, we have another expression proportional to 4 V, which may
easily be made simultaneous with Equation (1), which latter may be
rewritten, as follows:

q H . L
Vnﬂl—FﬂzT"(lﬁ_l-!- g i doni (7)

Equating the second terms of Equations (6) and (7), we have the
general water-hammer formula for closing gates, as follows:

aV,
g Hy

The successive values of ¢ with respect to time are quite inde-
pendent of the other factors of the equation, and they may be all

where K =
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predetermined from an arbitrary or assumed character of gate closure, Mr.
with respect to time. This may be expressed in the form of an inde- Soison,
pendent curve plotted, for example, from some knownr motion of a
particular gate with respect to time.

If the gate closure is uniform, as Mr. Gibson has assumed in
deriving his formulas, then the equation for ¢ may be written out, for
subsequent use, or plotted as a straight line on a piece of eross-section
paper, In this special case, the equation would be,

e =— 1—%,-”:1—%
as he states.
During the first interval, Equation (8) may be simplified to read,

PIIPRNEES o I R T ER ER (9

In order to “get a start” in computing the successive values of P,
oune interval apart, the first value of ¢, -, may be selected from
the gate-opening curve at any convenient proportion of the first inter-
val, and P, —, found from Equation (9).

Then, and thereafter, the successive values of ¢ taken from the
curve, one interval apart, may be substituted in Eguation (8) and the’
successive values of P, found from the known values of P, , as the
computations progress. If the complete pressure-time curve is desired,
several different proportions of the first interval must be selected and
the corresponding values of ¢ introduced first in Equation (9).

Equations (8) and (9) may be rearranged, of course, in the form
of the solution of quadratics, separating out the values of P, on one
gide, as Mr. Gibson has done, or these values may be solved by trial
as he has done in making up his tables. The result is, naturally, the
same in either case, and one method is no more nor less aceurate than
the other.

It is interesting to note the physical story told by a slight rearrange-
ment of Equation (1) when 2k, , is subtracted from both sides. Tt then
appears in this form:

@
by —ly = — (Va1 — V) =2l oo (10)

12
Now, the term 5 (V,—-y — V,) represents the ‘‘natural rise” in

pressure in a pipe of indefinite length, or at least so long that returning
waves do not interfere with the natural rise during the time taken for
the velocity to change the stated amount. This is the case in the first
interval as shown by Equation (14).

We know from the principles laid down by Joukovsky that a super-
normal pressure wave initiated at the beginning of any “interval” will
become subnormal upon its return at the end of the “interval” of time,
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or will be, so to speak, turned “upside down”, and hence that its

reducing effeet on the pressure which would otherwise exist at the end
of such “interval” is twice as great as the original supernormal value.
This accounts for the term 2k, ., and we may write another general
hypothesis which is adequate for the statement of Hguation (1), as
follows :

2 L
The rise of pressure during a,n} interval, —, of time is equal to
i

the “natural” or undisturbed rise, reduced by twice the value of the
tnta] pressure (above normal) which existed at the heammn;:,r of such
111Lenn11"’ _

There are probably many ways in which to express the philosophy
of Equation (1), and each may select the one best suited to his mind.
The following is one of them:

1f the pressure, h, ,, should remain constant throughout the
“interval” which it precedes, it is known, from the nature of an elastic
column, that each and every particle of water would bllﬂ‘bl‘ the same
diminution in velocity during the ensuing ~|.1|f11.¢~11r5~ “interval” and, hence,
that the change in velocity of the ecolumn, as a whole, would be faith-
fully recorded by the equal change at the end of the column, next
to the gate. Call this portion of the velocity ehange, 4, ¥. Then, from
the relation of impulse to change of momentum, we may write,

find (if): (%) L or,_ﬂ;hﬂ_l = (3) a5

Now, any pressure added later in the interval ‘under consideration,
could have time, during such interval, to distort only a portion of the
water column (of total round-trip length, 2L), and the change in
velocity produced at the end of the column by any such increment of
pressure, 4 h, may be derived as follows:

The mass affected in the time, df, is proportional to adt.

This tnass, multiplied by its acceleration, equals ‘the 111-:31*:-111(:]11: of
forece to produce the acceleration. T hE‘I‘{‘fDI‘F

dh = (i> i (—L) .on; AN :(i)d 4
q at : f

Clalling this additional change in veloeity (UF the end of the cnh]mn)

ﬁ ¥, we may write:
A = ( ﬂ-") dﬂ l-"
i
but, : .
-I?-ﬂ‘-l {Trg .V-u == AJ -V "]— AE I’Z-J. :ﬂnd? A h — 'Ii'-n s ﬂ'."'—l

Hence,

h’“ -1 -I_I h'ﬂ Ty h'-n 1= .hn o 'I"*.n, -1 = (%) { Fﬂ =1 T?.-ﬂ)
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MinTon M. Wargen,® Assoc, M. Axm. Soc. C. E. (by letter).—This M.
paper goes into the mathematieal theory of ordinary water-hammer s
more thoroughly than any previous disecussion of the question, and is
certainly a valuable addition to the literature on this subject. The
_eurves presented by the author show the differences in the various
formulas with great clearness.

The writer, however, does not believe that Mr. Gibson’s method and
formulas ave practical for ordinary use for three reasons:

First.—In order to use the formula, a large amount of very tedious
figuring must be done, and unless it is very carefully checked
by Iup;nrltlnnq a very small arithmetical mistake may make a
large error in the result.

Second.—The formulas have not been confirmed by experiments
and are based on certain assumptions the aceuracy of which
are open to question.

Third—In most cases, simpler formulas will give as accurate
results as the data wgrrant.

It is almost impossible to get away from the idea that the more
ealeulations and exact mathematical methods used in obtaining a
‘result in engineering, the more accurate the result will be, regardless
of the assumptions on which the caleulation is based. Tt is the same
false accuracy that leads engineers to submit cost estimates figured
~down to odd eents on projeets running inte millions.

The writer does not believe that the many assumptions needed in
deducing any formula for slow-closing gates warrant the elaborate
methods used by Mr. Gibson, until these methods and formulas are
‘backed up by careful and extensive experimental data, as were the
formulas of Professor Joukovsky.

U In arriving at his results, Mr. Gibson assumes that the area of the
gate is closed at a uniform rate, whereas the writer, in deducing his
simple formula,

L Ir

)

asgumed that the gate moved in such a way as to cause the pressure
to rise at a constant rate. In any given case, neither uasmuptmu i8
Etrmtly true, and experiment alone will show which is nearer the
.average gate motion.

Referring to Fig. 9, it is seen that, according to the author’s cal-
-culations, such a gate motion, giving a constant rise of pressure, is not
far from a straight line, :md I}rﬂbdhl‘f as near the truth in ordinary

h =

* Busmn Mass.
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gates as his assumption (uniform reduction of area), which makes the
mathematies very much more difficult.

There is great need for a series of careful experiments on slow-
closing gates, and it is to be hoped that Mr. Gibson, or some other
member of the Society, will undertake this work. Data from such
tests properly used would be of more serviece to the Profession than the
most perfeet theoretical formulas which have never been tested. ' Until
this i3 done, engineers will have to base design on the meager practical
data available, guiding their judgment by unproved formulas, and the
writer has found that the simple formula given above comes nearer
the pressures he has observed in practice than other formulas, although,
like the others, it is based on ecertain assumptions which are not

- strictly true.

Mr.
Anderson.

In recent tests by one of the best-known manufacturers of water-
wheel governors, the author’s formula has given results so clozely in
accord with the tests, that it has been adopted for general use. As
this company has many chaneces to obtain practical operating wvalues
of water-hammer, its conclusions are certainly of interest, in default
of other experimental data.

In regard to Mr. Halmos’ statement that this formula can never
give true results, even accidentally, it should be noted that, under
certain conditions, it gives the same results as the formula which he
uses (Allievi’s), and, in some of the tests mentioned in the previous
paragraph, has given results within the probable error of the pressure
gauges used.

In one point, Mr. Gibson’s formula gives what appears to the writer
unreasonable results. This is illustrated in Fig. 4, where the curve
rises very sharply between heads of from 10 to 100 ft. Alliévi’s curve
rises even more sharply and ean be easily proved wrong, as it reaches
values of & which are far above the maximum value possibly reached in
instantaneous closing. '

Mr. Gibson’s curve stops at that value, but the writer does mnot
believe that experiments confirm the large increase in water-hammer
for low heads over that for high heads. His assumption that the waves
are perfectly reflected from the slowly closing gate is also open to
question, and was not proved in Joukovsky’s experiments.

It is not intended to imply that Mr. Gibson’s formulas may not
prove to be as accurate or even more accurate than the others, but, in
the absence of any experimental proof, their added complexity does not
seem to be warranted, in view of the approximations and assumptions
on which they are based.

~J. T. NosLr Axperson,* M. Ax, Soc. C. E. (by letter).—On several
occagions, the writer has investigated this question, or a cognate phe-

. Nnrbul‘.hnng,. Victoria, Australia,

P ————————
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nomenon, with pumps—centrifugal and others—through long pipes. In
one case, there were two pipes with a common penstock—each of wood,

Mr.
Andergon,

3 ft. in diameter, and 2300 feet long. In every case, he has been

greatly impressed by the extreme complexity of the subject.

With the help of Professor Joukovsky's theory and some “rule-of-
thumb” guesses, gained from a general experience, these pipe lines and
the values concerned can now be calculated to as close an economic
margin as most other engineering problems. At the same time, the
result of experience shows so many baffling discrepancies, that the ex-
perimental results, which the author hopes to ohtmn “in the not too
distant future”, will be waited for eagerly.

The eare he has taken to colleet and co-ordinate the formulas, is an
earnest that he may be relied on to record fairly and fully not only his
results, but all the extraneous facts and happenings which may, however
remotely, bear on the many irregularities between actual records and
.what the férmulas anticipate. In particular, it might help if two
slightly disturbing factors were recorded in each test, that is: (1) the
temperature of the water, and (2) the proportion of free air present in
the water, :

The second factor will probably be quite immaterial, but, in a case
where the substance pumped through a centrifugal was sewage with
a specific gravity of 64 1b. per cu. ft., the writer found that the gases
contained had a very disturbing influence.

In some recent investigations, the writer used a steam indicator with
springs specially chosen for the anticipated pressure. Some indication
of the author’s apparatus will no doubt be given.

Forp Kurrz,*® Esqt (by letter).—Mr. Gibson has made a valuable
addition to the too few and seanty English treatises on the mathemati-
cal theory of water-hammer. His treatment of the subject, however,
is chiefly of value in obtaining, without the use of differential equations
and from physical laws the import of which is readily grasped,
formulas which give the same practical results as the much simpler
and less cumbersome equations of Lorenzo Alliévi, first published in
Rome, in 1903. These equations must not be confused with the con-
fessedly approximate and inadequate formula designated by Mr. Gib-
son as the “Alliévi formula”, and on which Mr. R. D. Johnson has ap-
parently founded a pressure-time equation. The equations referred to
are mathematically rigid formulas which take into account not only the
effect of net head but also the eompressibility of the water and the
extensibility of the pipe and which, as far as the writer knows, have
never before been published in English. In 1911, the writer prepared,
for his own use, a translation of a German translation of Mr. Alliévi’s

* New York City. e L oo
t Now M. Am, Soc, C. E.

Mr.
Kurty,
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work, and found the latter’s treatment so remarkably comprehensive and'
thorough that he has used it ever since in all water-hammer problems.
The German translation® ean be found in the Engineering Societies
Library. I : 1rlinoTy

In presenting the exact formulas of Alliévi, the following nomen-
clature will be added to that of Mr. Gibson’s paper: E

| 17— & :" — excess, or water-hammer, head due to ins!:antanan_us-
complete closure of gate.
m = g-};‘; = rﬁtiu of instantaneous water-hammer haaﬂ to net lxeaarl;'
F (t) and f (1), or simply F and f = certain functions of time, ¢.
3 7= ﬂ-"j-;—h-‘- = ratio of total variable head to net head.

0
¢ (1) = gate-opening at time, ¢, as a ratio of maximum "atﬁ -opening.

The exact formulas of Alliévi contain a term which makes it possi-
ble to. determine the pressure at any point of the pipe line at any
moment, but the writer is presenting only the simple form for deter-.
mining pressure at the outlet, or discharge section just up stream from
the gate, as that is the problem investigated by Mr. Gibson. It is also
assumed that the pipe line is of uniform thickness nnd diameter
throughout its length. Then, during the period,

L)
0< b2 —

L
.I'
==
-~

F ()
g
where 2
Ft) . . m? g A AT,
ST L [¢ ()] —m @ (L) 14 m'—+ —[4;'; {5]]

0 < .
and, during the period, ‘
2k =
”:_ t;-. ”{: L1

2 L 1

F (1 F(f’_ ) Jeigeyels eyl 5
S pe ot e o G MO e g
H, H, H, TR

* “Allgemeine Theorie iber die veridnderliche Bewegung des Wassers in
Leltungen,” von Lorenzo Alliévi, 1009, :




DISCUSSION ON PRESRURES IN PENSTOCKS iive

where RI:}:‘;?
’ F@t) f@ , m . E
w1 Pttt g3 B0
2 1 () m? 5
e - —_—— £
mcp(z)_\ll Fm 7 | 2 [¢ (t)]
t
For the linear law of gate movement, ¢ () =1 — —, as already

- i
stated by Mr. Gibson.

~ These formulas applied to Mr. Gibson’s first example give the follow-
ing equations :

For 0 <t z 0.35 sec.,
7 ] ey |
D _ 10.35008 + 53.56185 ¢ — 1035005 11.35008 ¢ - 26,7509 7
0
and, for - 0.35 < & 'C:: 6.0 sec.,
£ (1) - L (D) some
= 10.35008 — —= } 53.56185 o*
HD 10.3500 Ha i 23.56185 ¢

-

K O 7
Iz mzsam}ﬁ\] (]1.3]5[){!8 i ;”) &% 4 26.78092 44

L]

' P (t " (1
As already noted by Mr. Gibson, the values of —% and FF() are

0 0
so small compared with some of the individual terms of the equations,

that it is necessary to use logarithms in solving the equations.

Using the exact Alliévi equations as given previously, Table 6 has
been prepared, showing the rise of pressure and also the differences
between the values of the rise obtained by Alliévi equations and those
obfained by Mr, Gibson’s equations., The maximum divergence of less
than one-half of 19, shows the remarkable agreement of the two
methods. If is apparent, however, that the simplieity of the solution
by the Alliévi formulas, without giving heed to magnitude and direction
of waves in the computations, makes it far superior to that of Mr. Gib-
son as a working method.

The exact formulas of Alliévi also furnish equations similar to
those given previously for the case of the opening of a valve at the
lower end of a pipe line, either from fully closed position, or from
some initial partial opening. As already stated, in their complete
form they also give the pressure at any time for any point along the
pipe line, thus covering the matter mentioned by Mr. Gibson as to be
discussed by O. V. Kruse, Assoc. M. Am, Soc. C. E. Of course, there

are also exact equations for the velocity at any time for any point along
the pipe line,
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The partial differential equations for the general motion of water
in pipes are based on the fundamental differential formulas for the
motion of water in general. Unfortunately, these partial differential
equations, four in number, cannot be integrated (not even by ApProxi-
mate arithmetic integration go far as the writer knows) without
making the following simplifying approximations:

1. Velocity in direction of axis of pipe considered uniform over any
chosen section of the stream.

9. Skin friction and viscosity neglected,

3 Volocities at right angles to the axis of the pipe, due to expansion
or contraction of the pipe by changes in pressure, neglected.

4. Pressure considered uniform over any chosen section of the
gtream.

5 Assumed that the pipe consists of individual circular elements
independent of each other, which are freely extensible.

8. Assumed that the ratio of velocity of water in the pipe to the
velocity of propagation of pressure changes is small enough, compared
with unity, so that its addition thereto or subtraction therefrom can
be neglected in every case at every instant.

By making these approximations, we obtain the so-called exact
formulas of Alliévi.

My, Gibson’s method of taking account of ekin friction (which is
only approximate, as has been pointed out by William P. Creager,
M. Am. Soe. C. ) could easily be applied to the exact Alliévi formulas
by changing the factor m so as to have it correspond at all times to
(H, - h;) instead of to H,. The exact Alliévi formulas can be applied
s0 a8 to take account of varying diameters and thicknesses of pipe in
the same line, but they soon lead to so much complication that they
become impracticable. In such cases, the writer uses the formulas as
already given for a pipe of uniform diameter and thickness, but gives

L
QB

A :
to m the value, ———=, where @y equals the flow of water in a pipe at
g H ==

o
full gate-opening, L equals the length of any section of pipe, A, its

oross-gectional area, and a, its individual value of the velocity of
L

propagation of pressure changes. Also, the factor, i must every-

; : L ! ks
where be changed to read 2 = = This is confesgedly an approximation

made without mathematical proof, but it is probably exact enough for
practical purposes in the majority of problems.
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TABLE 6.
Interval It 3
in terms () Per{:enlp-
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E_L Hy 5 ( = Alliéwi | Gibson genes,
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I
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WinLiam P. Creacer,* M. Am. Soc. C. E. (by letter).—The theory
of water-hammer in penstocks is one of the most intricate problems
confronting engineers. Mr. Gibson has made a considerable addition
to the knowledge of the subject; but exact solutions for all conditions
have not yet been reached. :

The author has developed rational equations for penstocks of con-
stant diameter and negligible friction head. In cases where friction
head is relatively large, and particularly where the penstock has a vary-
ing diameter, we are still very far from a practical solution.

At any instant during gate closure, the discharge through the gate
18 a funetion of the static head plus water-hammer head less friction
head, all measured at the gate. 2

Mr.

Kurte.

Mr.
Crengoer,

On page 725, the author makes the assumption that the friction

head at the gate is proportional to the square of the velocity adjacent
to the gate. This assumption appears to the writer to be only approxi-
mate, since it is well known that, at any instant during surges, the
velocity is materially different at different points on the penstock.

* New York City,
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2 : e : foon2
Mr. It is the writer's opinion that, during the period, —, subsequent
Creager. ot

to a single small instantaneous closure, the frietion head at the gate
is not constant, although the veloeity adjacent to the gate during that
period is constant. This constantly. varying friction head makes it
very difficult to include this feature in the equations for water-hammer
and, in all probability, the author’s methods are as close as can be ob-
tained. Tt would be of interest to know how much difference the
inclusion of friction head makes in ordinary problems.

For a penstock with varying diameter, auxiliary waves are set up
ench time a water-hammer wave passes a point of change in diameter.
Tor this condition, the author’s equations would not apply. His methods
would apply, but they would be exceedingly difficult, if not impossible,
of practical application.

Tt is evident that the maximum rise of pressure is materially in-
fluenced by the characteristics of the gate-closure curve. It is well
known that modern turbine governors do mnot provide a uniform rate
of gate closure throughout the stroke. Tt is also possible that governors
of different types have different closure characteristics. Consequently,
complete data for the determination of maximum water-hammer for
specific cases must include the gate-closure characteristics of the gov-
ernor which is to be a part of the machinery.

ﬁihg-;ran NoryAN R. Gmsox,* M. Ax. Soc. C. E. (by letter).—In closing the

SOD. Jiseussion of his paper, the writer desires, first of all, to make amends,
as far as possible, for the injustice unknowingly done to Mr. L. Allievi
by the reference to his formula on the diagrams and in the text of the
paper. As pointed out by Mr. Halmos, the formula designated by the
writer as Allievi’s is only one of several contained in his complete
work. While “ignorance excuseth none”, the writer can only plead, in
extenuation, that he did not read Allievi’s work, because he could not
find an English translation of it, but was led to believe, by the frequent
references to “Allievi’s formula” in English literature on the subject,
that the formula quoted was, in fact, the one and only equation derived
by Allievi. The writer was the more completely led astray by a lengthy
reference to this formula in a paper published in the Transactions of
the Society, from which it could not but be inferred that the author
had read the work of Allievi in the original language. It is inconceiv-
able how any one, having read it, could so overlook the most important
part of Allievi’s work. :

The writer is indebted to Mr. Halmos and Mr. Kurtz for having
brought to light some further formulas of Allievi, as published in the
German and Italian languages. Mr. Halmos states that the writer’s
solution agrees in every particular with that of Allievi, and Mr, Kurtz
finds a close agreement in an arithmetical example.

* Niagara Falls, N. Y.
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The identity of the results obtained by the Allievi equations with M.
those derived from the writer's may be proved as follows: Gibaoy.
Considering first Equation (3) presented by Mr. Halmos on page
750, it should be noted that Mr. Halmos had the writer’s attention
drawn to a mistake in his definition of ¢ (¢). This symbol stands for
the ratio of the instantaneous area of discharge to the area of the pipe
(not the area of the gate-opening at the time, { = 0).
The two nomeneclatures are as follows:

Halmo=. Gibzomn.
L B o ;
w(¢)=(1_ “-) S — R
T/ N2y S
.'.-’u — -Hn
Yy=Hy+ h ;
i a ¥,
g
Co= I;l}
(== A)c

On page T50, Mr. Halmos states that F (f), found in the first
interval, should be substituted for (f) in Equation (3), in order to
obfain the value of ¥ for every subdivision of the second interval.

'Usmg' the subseript n of the writer’s notation, the relation between
F (t) and (f), may be expressed by the equation:

-..-'l| (gn} = F (t'i‘:l—l)
Again, on page 750, Mr. Halmos gives:
T & e
F (1) = 7 (¢g — C) — f
Substituting the subseript, n, and the writer’s notation for ¢, and C,

:: A4 =
K (!-n) + -Jll {'t'-u} = :? (rﬂ e P .{n)

L &
e ot T == B ) A B, )b 2 St )
and, similarly.
= ¢ £ g : .
2 To— Vi ) = 2H{F e )+ Fltpgdf oo 2)

Subtracting Equation (1) from Equation (2):
& r T
EE{FM_ in— [)*zhﬁ (tp- “}'—F(,]{

If each term in the writer’s general expression for R is now ex-
panded in terms of V, then:

. s L
E'-H:RD+2E{(VI1¢_ Ve l)+{]' Pi‘n—s);' : :

fﬂz
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and, by analogy :
R, =Ry + 2 [{F (ta-s) S F @) + A F ¢ —F(fyg) £t |
and, by cancellation: :
R, =R, —2F () .

and R, ,= B, — 2 1 (t,)

By substitution of the above values and by reference to the relation
of terms in the paper, Allievi’s Equation (8), as given by Mr. Halmos
on page 750, may be written for any interval, n:

: : : : S
(‘Lfl} i hrn-]ﬁ —12 (HU + h'f-n) (H[J —1_ Rt-n—l iz T;ﬂ: + %HU+ Rm—l |!I,? =0

and by solving this quadratic:

1 it s v,
W j (S, + 2 Ri) = A St, (8
which is the writer’s general expression, similar to Equation (10) on
page 724, for i at any time in any interval.

My, Kurtz has presented the general Allievi formula in somewhat

different, form from that: used by My, Halmos, in that the values of

h

¥ and X at: the interval points, as contained in the writer’s values of R,

are eliminated, and the labor of eomputation is thereby redueed. The
writer's equations, however, Tequire no more heed to be given to “magni-
tude and direction of waves in the computations” than do the Allievi
equations. Mr. Kurtz’s remark in this connection, on page 767, prob-
ably refers to the explanation of the work of arithmetic integration
which preceded the writer’s derivation of his formulas.  Mr. Kurtz’s
Table 6 of arithmetic errors indicates merely the difference in the results
that might be obtained by two computers. The results given by the
Allievi formulas are identical with those of the writer.

The elimination from the writer’s equations of ¥ and hoat the inter-
val points may be accomplished in the following manner: Referring to
the equations on page 724, the expression for R, may be equated to

that part of the equation remaining after R, has been substituted in
L4 A
] TR - b (..:rl- -
place of i V,+ 1y t

Thus, in general,

: f, T —_— B e
_R*n 5 == —:T— ( ———;;) ‘BU .\/Ifu -+ 'h’!:_n 1 hr'u — _ﬁ_ ¥ ', - Ii'-;.n
il fl; : X
—— LM R e —_— L T i B ——— ;' —_ — . —
— 7 'F “ jr g (Vﬂ ¥ .'“\! T h-u — 1 ( r_"_ sy q T ferey h'.f.u -1

@ t ey Slpt B
:—q—’ (1—- l"T_I_T—I) Bﬂ '\/HU -L hl L-—- .Flr
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Lf this value of R,n_ : is substituted in the writer’s equations in place

of the value given in the momenclature on page 722, the labor of
solving problems by the formulas will be lessened.

Mr. Johnson’s discussion contains considerable mew matter which
will be found most helpful in solving problens of the kind under con-
sideration. Ilis remarkably simple and concise presentation of
the fundamental principles of this subjeet and his derivation of

the expression for 7k the ratio at any time of the rise of pressure
0
to the net head, are particularly noteworthy and important. His chart
of limitations, shown in Fig. 12, makes it possible to see at a glance
where it is safe to apply the general logarithmie curve given by Allievi’s
Formula (4), which is Mr. Johnson’s Equation (7), and also to see
where the maximum pressure rise occurs at the end of the first interval.
As pointed out by Mr. Johnson, his IEquation (7) covers a wide range
of conditions, and it will be found convenient to use this equation
wherever it applies. In Fig. 13, Mr. Johnzon has indicated how an

exceedingly useful chart may be prepared by resorting to the expedient

f
T s e e T Wig. s - LR 1T b S €
of solving for the ratio, -2, instead of for A, . directly. Such a

chart may be made to .u;hu:fv graphically a range of results as wide
as desired and, as stated in the discussion, each point on the chart
covers an infinite number of cases. ; :

Mr. Creager’s desire to know more about the application of
water-hammer formulas to pipes of varying diameter will be appre-
ciated by every one who studies this subject. Needless to say the
problem is a complex one, but it seems certain that the fundamental
relations that have been developed herein can be applied not only to
this but to any water-hammer problem. The point brought out by Mr.
Creager that the friction head at the gate is not constant during the
period ‘of % is worthy of consideratiorn, but the writer would suggest
that the change in friction head, being a change in pressure, cannot
traverse the length of the pipe at a rate faster than the veloecity, ¢. In
any event, even though the friction head does vary during the interval
periods, it would seem that the net result throughout the closing time
would be that the friction and velocity heads are recovered propor-
tionately to the rate at which the velocity of flow is destroyed.

On page 769, Mr. Creager misquotes the assumption made on page
125 of the paper. The friction head at the gate was assumed to be
proportional to the square of the velocity of flow, not the velocity
“adjacent to the gate.”

During the past year many experiments on pressure rise have been
made by the writer with specially designed apparatus. Most of the ex-

|

My,
Gibaon.



Mr,
Gihson,
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periments, however, were made in connection with his new process for
the measurement of the flow of fluids in closed conduits, and as this work
continued until late autumn, it has been necessary to postpone until
later the particular experiments that have been proposed to show
the relation between gate motion and pressure rise covered by the
formulas. As soon as possible the results of these experiments will be
made available for publieation, and in assembling the data Mr. Ander-
gon’s request for full particulars will be remembered.

In reply to the criticism of Mr. Warren, it may be observed at once
that the vital importance of including the initial static head among the -
factors that determine the maximum rise of pressure, cannot be con-
sidered in the same class as “odd cents in million dollar estimates”.
The large increase in water-hammer for low heads over that for
high heads when the gate motion is uniform, is caused by the influence
of the initial head.

Mr. Warren cannot obscure the points at issue by clouding the
discussion with conjectures as to whether uniform gate motion or the
gate motion he has assumed, but not defined, “is nearer the average
gate motion”. The vagaries of gate motions are not under considera-
tion, as is clearly stated on page 710. The problem considered is the
rise of pressure following any given gate closure, and, for this purpose,
in deriving the formulas, uniform gate motion has been assumed.
Diagrams of non-uniform gate motion were shown and attention was
drawn to the effect of such non-uniform motion on the shape of the
pressure-time diagram. In all practical cases, actual conditions will
be determined and, as Mr. Johnson says, “the element of judgment must
enter as wusual”. Mr. Warren’s statement that his formula is
based on a certain prescribed shape of the pressure-time diagram which
may be produced by a special, though undeseribed, performance of the
gate, condemns his formula for general use, because it is impossible
to adapt it to any particular gate motion. Indeed, what he says of his
own arbitrary diagram is equally true of any form whatever which
gives a value of the maximum pressure rise greater than the mean
effective pressure rise and which encloses a proper impulse area.

For uniform closure, Mr. Warren’s formula always leads to errors
on the wrong side, that is, it gives less than the true value. In the
region, pointed out in the paper, where it is approximately correct,
and when the first interval is a small proportion of the closing time, as
it frequently is in ordinary cases, this formula gives a result close to
the value of the mean rise of pressure which can be determined by the

] ; LV
simple expression, 4T

Mr. Warren questions the assumption that pressure waves are per-
fectly reflected from the slowly closing gate. The question implies a
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misconception of the nature of the waves themselves. They are not of mr .
a substance that rebounds like a rubber ball, but are conditions of the ®™5°™
water column at various times at different points along the pipe line.
When a wave is started by a movement of the gate, the water is put
into a state of super-normal pressure and it remains in this condition
at the gate unfil the wave has traversed the length of the pipe to the
origin and back again. When the wave has returned to the gate, the
state of super-normal pressure there is converted to one of sub-normal
pressure and the water there remains in this condition until the wave
has again traversed the distance to the origin and back, whereupon the
condition at the gate again changes to a state of super-normal pressure,
and o on. At points along the pipe the changes of condition oceur
in the same sequence, except that a state of normal pressure exists
for a time between the periods of super-normal and sub-normal pres-
sures. When the gate is gradually closing, the algebraiec sum of the
innumerable infinitesimal waves (super-mormal pressure being con-
sidered positive and sub-normal pressure negative) fixes the pressure
that exists at the gate at any time during the closure.

The authority for the assumption that the flow of water in the pipe
does not affect the wave iz to be found on page 709 in the following
quotation from Miss Simin’s translation of Joukovsky’s work:

“Tf the water eolumn continues flowing, such flow exerts no notice-
able influence upon the shock pressure. In a pipe from which water

is flowing, the pressure wave is reflected from the open end of the pipe,
in the same way as from a reservoir with constant pressure.”

Finally, it may be stated definitely that, as an empirieal rule for
convenient use, Mr. Warren’s formula is quite untrustworthy, and as an
equation showing the relation between velocity destroyed and rise of
pressure, it is fundamentally and inherently wrong.
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