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NOTE 1.

GENERAL DISCUSSION OF THE METHOD

§. 1. - General comments on the variable flow.

[n a preceding paper, (*) the nolations of which will be maintained in ge-
neral, I have given the general formulas which govern the perturbed (variable)
motion ol water in pressure conduils.

[ have also demonstrated that the pressure varialions are propagated along
the tube with a velocity a which is a function of the moduli of elasticily, E, e,
ol the pipe and the liquid and also of the diameter D and the thickness e of
a given conduit, according to the formula:

(1)

l! tu(l 1 D)

a g \s e

which for water in melal tubes, pulting » = 1000 kg./m?, ¢ =207 x 10° kg, m"®
gives

%, 1425
= l/l A j_B (1 bis)

a

B e

Inserting the values E for steel and for cast iron, it was observed that
the numerical value of a ranges from a minimum of 600 to 700 m. per sec.,
for thin pipes of large diameler, to a maximum of 1200 to 1300 m. per sec.,
for thick pipes of small diameter.

[ have also demonstrated that the height of the variable pressure (expressed
in melers ol water) and the velocity v in any secltion of the conduit during
the variable motion are expressed by the equations (**):

y=%+F+Tf

e @)
B (F— 1)

in which F and [ signifv the variable pressure heights expressed by functions

(*) See introduection.

(**) Contrary to the notation of Lthe 1902 paper. I prefer not to make any limiting assumption
as regards the sign of F and [ and therefore have given to f the same sign as that of F in the
first, and the opposite sign in the second equation of (2).
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2 LOBENZO ALLIEVI

of the form

aT 4
F(t - E) and f(*' At E’) respectively,

where z is reckoned in opposite direction to v; that is, F represents a variable
pressure (positive or negative) being propagated in the direction + whith a
velocity a, and conversely, [ represents a variable pressure propagated in the
direction — 2 with the same velocity a. In fact F becomes a constant quantity
il we pul

2 = + atl 4 const.

(as it would appear to an observer traveling along the tube with a velocity «
in the direction of + «) and conversely [ becomes a constant quantity if we
pul

[ have demonstrated, moreover, that equations (2), if the limiting condilions are
introduced, can serve to determine the values I and [ at all instants and al
all sections of the tube, and that these equations make possible the numerical
solution of the phenomena of variable motion in any given case. (%)

Considering a conduit of length L, having, at ils lower end (the origin ol
the abecissa @), a gate which can vary the efflux, and communicaling, al the
upper end, whith a reservoir of constant level, il was demonstrated thal, for
each section of the pipe, the funclion f has at any given instanl a value equal
to and of opposile sign of that which the function ¥ had al an instant which
precedes the instant considered by a time inferval

9 (L — @)
(4]

3

which is the time interval necessary to travel twice, with a velocity a, the
portion of the pipe between the section considered and the reservoir. We have
therefore

and the phenomenon occurs as if every superpressure F propagated from (he
gate toward the reservoir (direction - ) were reflected with a negalive sign
(depression) and sent back toward the gate (direction — ).

(*] It can also be observed that if the law of the propagation of the variable pressures with
a constant velocity a is admitted as an experimental fact, the 2nd equation of (2) can ben dire-
etly derived by applvng the general dynamical principles to the motion of a liquid element of
thickness dx = adl.
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[t results evidently from the preceding, that in the case of such a conduit,
the perfurbances produced by the gate movement al any section of abcissa =
will be perfectly known as soon as perturbances produced at the section of
abcissa # — o, at the gate, are determined, and, where, by (3), we have

it =—F (: — 2;) (3 bis)

Finally, I have demonstrated in my 1902 paper, that by the introduction
of the efflux equation (which establishes another relation betwen the pressure
height and the velocity of flow in the tube) it is easy to determine a series of
numerical values of F for values of time differing by

now, each of these values of F gives the values taken by [ at the same abcissa,

- - - = I-J
but at the succeeding instant, that is —— seconds later, so that we can calcu-
L4

late the values of pressure and of velocity of the water for each of these
instants.

: i : . i B ey
[n the following, I will designate by the symbol x the interval e which

[ have called the duration of the phase. I have shown lhat if the operation
of the gate is started when the regime of flow is permanent, the function [ is
constantly zero during the period of time equal to u (duration of the direct
blow) and that it is possible, moreover, by introducing the efflux equation, to
calculate the value taken, al any instant £, between o and p, by the first
term F, of the series of values F,, F,, F,, corresponding to the time

Ly &+ U+ 2 ete.;

each of the terms I, F_, F,, ete, gives, as already observed, the value which
— [ will take @ seconds later.
The expression: duration of the phase, for the designation of the time

2

interval -

seems lhe more justified, as it is eesy to demonstrate that in the
a

case ol a waterhammer produced by the movement of a gate executed with
constant speed, the law of variation of the pressure is subject to sudden discon-
linuities at the instants

[—u Eu.? 3{:.? ete.

Ll | !

T'he graph of the pressure, as a function of time, will therefore show a
broken line the angles of which are separated from each other by equal inter-
vals corresponding to phases of duration p.

I designated by « phases of counter-blow » the periods of time equal to p
which succeed the phase of the direct blow, and during which the phenomenon
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of the reflection of the pressure from the reservoir toward the gate (pheno-
menon of counter blow) gives values different from zero to the function [.

These general principles therefore suffice to solve numerically the pheno-
mena of waterhammer for all given conditions, and in my previous paper, 1
have shown their application, to the most important practical cases, as for
instance the closing and opening of the gate or the stopping of same al a
given poinf, cte. :

I have pointed out also, in certain cases, the influence of the relative ma-
gnitude of the constants defining the tube (pressure height y,, normal velo-
city v,, velocity ol propagation a) and the speed of the gate operation, but
these fragmentary investigations are far from constituling the « Theory of Wa-
terhammer », and are more or less applications and examples of what L con-
strained myself to designate as the « General theory of the variable flow »,
feeling at that time already that the < Theory of Waterhammer », must be
something very much different.

The scope of the present research is precisely this « Theory of Waterham-
mer », that is the investigation of the general laws ol the phenomena grouped
under this name, occurring in pipes which conneet a reservoir of constant
level to a gate mechanism of adjustable efflux, and of those laws which will
permit a rational classification of the stated phenomena as well as of the
tubes in which they occur.

Three fundamental principles characterize the melhod of this study and
distinguish it from others previously published on this subject, i. e.:

1. Tt is contemplated to introduce not the absolute values, bul the relative
values of the unknown variable quantities referred to their initial values;

9. Not the pressure height bul the corresponding velocity of efflux will be
selected as the basic variable, or more accurately the relative value ol Lhe
efflux velocity (that is the square root ol the relative value of the pressure
height);

3. As unit of time the duration of phase will be introduced, eliminating
all considerations depending on the length of the conduit. '

With the help of such simplifications, the laws of the phenomena ol wa-
terhammer appear as functions ol only two variables, one of which (designa-
ted as the caracteristic of the pipeline and indicated by the symbol ¢) delines
the pipe in normal flow conditions, and the other, indicated by symbol 9, de-
fines the velocity of the gate operation. These laws will therefore be capable
of simple graphical representation, and each of these graphs will embrace all
possible pipelines and all possible speeds ol gate operalion.

The numerous () tests made since the publication of my [irst monograph
absolutely verify the correspondence of the actual phenomena and the results
of the variable [low, conferring especial importance to the conclusions of the
study which [ollows, the generality of which conclusions, expressed by formulas
or simple and synthetic graphs turnish accurate and practical criterious for
their technical application.

In the following discussion il is assumed that the reader has a clear
understanding of the signilicance of formulas (1), (2) and (3), previously given,

{*) 1 refer especially to the tests made by the engineers of Messrs. Picard Pictet e Co. on the

corduits of the Ackersand, and to those reported by Prof. Neeser in the Bulletin technique de la
Suisse Romande (Jan. 1910).
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& 2. — Fundamental formulas.

Considering a gate operation which. beginning at {=0 disturbs the regime
of normal flow (defned by », ard v, and indicaling by ¢, a lime < p (thal
is an instant of the 15t phase or the phase of the direct blow) and distingui-
shing, moreover, by indices 1, 2, 3, 4, etc, the values of the several variables
corresponding to the instants :

t, t +u,  + 2 ¢ + 3y, etc.,
which fall respectively in the 1st, 2nd, 3rd, 4th, phases, etc., we have, by for-

mulas (2) and (2 bis), at the section near the gate (adopting capital letters for
the variables refering to o = 0), -

1“I: Yo _'1_ Fl
Y, =, o B, =— k% (4)

|

|

Yn = U, s I"‘a (= Fz.'

(D)

The first deduction of general character, resulting from the form ol the
sets of equalions (4) and \5), is expressed by the fact thal the series of the values
of the pressures

r ." (] .
R e A e L

and that the series of values of the velocities
":17 v::'} 1U:u Vn BtU.,

separ.ted from each other by time intervals equal to the duration of the phase,
constitute interlocking series, that is series of values which depend only on
initial conditions and on the positions of the gate at the instanis

f” f] + U !r, -+ 2{1, il -+ du., etc.,
but do not depend on the intermediate positions which the gate might have
occupied, nor on the values of Y and V which the pressure or velocity might
have taken in the intervals separating these instants.
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The analitical expression of this serial inlerlocking will be oblained by
eliminating the I's from the systems (4) and (5).

Adding each equation of (4) to the preceding one, and subtracling each
equation of (5) [rom the preceding one we easily obtain .

.....................

Denoting by 4 the ratio between the variable gate opening and lhe section
of the conduit, we have

7
"!"u AR el ﬂfi e

u, u;

where u, and u; denote the efflux corresponding lo the pressure heights v, and
!t
Yi, and denoling by + the ratio e that is the ratio of the (variable) rate of
Yo
opening ¥ lo its original value 4,, in such a way thatl

i Vi b
1 j——= 1 TH = "'*—l e p— —2
Mo L Y, i u,
and putting
u,’ uj’ ; v,
E‘II'.': i == \L:'ﬁi”i_
° 2 2g° u,

and introducting thalt characteristic g of the conduit, already mentioned in
the preceding paragraph, defined by

av,  av,

e 2!} 1';0 o l-{n.': : |

there 1s obtained

e — -, —=2p )
A, — 1, U, }

} (8)
u'_'-" 7 5 u BT i“'-ﬂ = 2; ”-'_'l- [q_ ‘”? - -ri-,", u-'.':} \

that is a system of quadratic equations, where the only unknowns are the ef-
flux velocities u.
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In order t o be even more gencral, et us censider s the uvnknown, as al-
ready observed, not the absolute values ¢f the elflux velceitics, Lut iheir re-
lative values referred te the initial value u, dividing lhcrefore, equalicns (8)

by u®,, and putting & = -:; , , We obtain
L]

EP {1 _Tht-z) \

-
|
a—y
|

taj -} }:a! — 2 = 2P (-'rllt‘l i T'ltl)

EF (Tlsz:n = TJ!:KH)

&)

o
1
+
e
(=1
LS
I

.................

the fundamental syslem fcr the study of the walerhemmer phenomena, the
theory of which, in fact, consisls in the development of and deduclions made
Irom the equation system (9.

Observing that, by definition, n, = 1 and {, = 1, the first equation of (9)
can be written as

tlg 'i' ﬁ:, — 2 = 2{‘ {Tlu t:n e HIE:} ]

and that therelore the system (9) can be regarded as the result ol the appli-
cation ol the general equation,

it 8 — 2 =2 (i1 Gi—1 — %ili)

which governs all the hydrodynamic phenomena which occur in a conduil
fed by a reservoir of constant level and supplied with a gale at ils other ex-
tremity,

The designation « characteristic of the conduit » given to the notation p
is fully justified as in it are absorbed all the individual elemenls of the pipe-
line, such as the pressure height y,, the normal velocity v, , the diameter.
thickness and elasticity of the pipe (included in the velocily ol propagation a),
The only element of the pipeline nol accounted for in p is the length I, which

9

enters into the definition of the duration of the phase p = il and which

lixes the rythm of the interlocked series of the values ;.

The relative intensity of the waterhammer phenomena, that is the un-
known ¢uantity which properly is the technical objective of a general theory,
depends therefore, beside of the law of gate movement (value 3), on the single
characteristic p. It is, therefore, useful to investigate the meaning ol this cha-
racteristic and the numerical limits (within the field of practical applications)
of the values of same.

&

§ 9. — The characteristic p.

The intrinsic nature of the phenomena of the variable (or perturbed) motion
of a liquid in a pipe, which motion is characterized by the continuous va-
riation of both pressure and velocily, can be evidently defined as the result
of the effect of such variations continuously transforming kinelic energy (of
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the moving liquid) into potential energy (elastic compression of the liquid and
the elastic expansion of the pipe), and vice versa. :

It is therefore legitimate to assume that the laws of such phenomena must
bear a direct relation to the quantily ol energy, both kinetic and potential,
contained in each portion of the tube at any instant, and more particularly:

_ auv : : _ L
that the characteristic g = ﬁ which defines the normal state of the pipeline

must be in direct and close relation with the quantity of energy, kinetic and
potential, which is contained in each unil of length of the conduit ‘when the
flow is permanent. And, in fact, it can be demonstrated that the value ¢ is
exactly equal to the half of the square root of the ratio of these two quantities
ol energy.

Let W, be the kinetic energy per unit length of the tube when the flow
is normal, that is the kinelic energy possessed by a unit length of the water
column flowing with a velocity v,; and let W be the quantity of poteniial
energy per unit length of the tube in normal state, thal is the quantity ol
energy absorbed by the elasltic compression of a unit length of water column
and by the elastic expansion of a unit length of tube.

Using the accepted notations, it can be scen that

rwD? pf TwTwD'P,

Wo=" =t

Putting, moreover, W = W’ + W’ were W' and W" are the quanlity of
energy absorbed by the elastic compression of the liquid and by the elastic
expansion of the tube, respectively, we have

T 1 mD* ©¥ ﬂ"—“uuny“n?
"‘, To— '1- _""-:i"" = - [ yﬂ —— T
s L 98D oy, Dal  # w' D" D

which, added, give

and, by equation (1)

Dividing W, by W, we obtain

E’T_z— a”=')-]—4 y
W“(gyn e

¥

]
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or

w (10)

as slated above.

Having made clear the intrinsic significance of the characteristic p, we
now will see between what limits ils numerical value ranges within the field
ol practical applicalions.

I have observed in § 1 that, based on eqguation (1 bis}, the value of a will
range from a minimum of from 600 to 700 m. for thin riveted pipes of large
diameters to a maximun of from 1200 to 1300 m. for thick pipes of small
diameters.

As, on the other hand, the normal velocity v, ranges between 1,50 m. and
3m., it is easy to conclude that, if the thickness of the pipcs is determined by
methods in general use, that the value of ¢ will vary from:

a minimum of ¢ v 0,10 for high heads and small velocities

i for L}.d[li[}lL y, @ 1000 m. v » 1,60 m.)
to a maximum of s ® 10 for low heads and large velocities,
(for example y, @ 10 m.; v, 0¥ 3 m.).

Before passing of the numerical calculation of p, it is necessary to make
a preliminary observation.

All the formulas heretofore discussed and those which will follow assume

: : . D
that the velocily ol propagation ¢, and therefore also the ratio — are con-

stant along the pipeline, this being the condition of integrabilily of the dif-
[erential equalions of the variable motion from which the fundamental equa
tions (2) are derived.

This assumption is substantially correct in many cases ifor example for
the long pipelines of city water supplies) but is seldom true in the case of
pipelines [eeding power generaling machinery.

It is at once evident that such conduits are mostly laid on a slope; con-

) : . : :
sequently the ratio — (e being the thickness delermined on the basis of the
e

static head obtaining at each section of the conduit) will be diminishing from
upstream to downstream, an therefore the value a will diminish from the
gate toward the reservoir.

It will be convenient, in such a case, to introduce an average value for a

IS. & - -
which a pressure variaiion needs to

corresponding to the total time E(
dx

travel the several portions, I«, of the pipeline with a variable velocily ax; and

it is legitimate to assume such an average value of a for the calculation of

the characteristic ¢ of the tube, il phenomena of such duration are investi-

gated which permit of the elasticity of the whole pipe entering into the game,

This will certainly be the case when we deal with phenomena the duratiou

& i = 2 ]" # *
of which considerably exceeds the duration of the phase v = T that is, with
{

the phenomena in the phases of the counterblow, while for phenomena of a
duration, < p, that is, during the phase of the direct blow, we will have to
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assume for a, in the calculation of the characleristic ¢, that velocity of
propagation which corresponds to the lower end of the tube. A typical illu-
stration of this latter case is the sudden closure of the gate.

Reserving for subsequent studies a further discussion of this question, it
can he concluded that the variation of a ranges only between such limits,
that the substitution of an average value for same will have no sensible in-
fluence upon the accuracy of the results. In order to give a more concrete
idea of such limits, we will discuss the case of a riveted steel pipeline of
constant slope, assuming that the thickness of the shell, at each point, is cal
culated on the basis of the static head and on the basis of a constant coel-
ficient of resistance R = 10° kg/mq and by adding a constant which we will
assume to be proportional to the diameter, being 0,0025 m. per m. of D.

Indicating, moreover, by yx the static head in any scction of the pipeline
of abeissa #, we have

2e  1000. y< L
]_j — R 103 + 0,0UZ),

which, substitute in (1 bis), and making R =7 kg./mm* gives for the velocity of
propagation ax, in the portion of the pipe of abcissa #, with great approxi-
mation

ax = 1425l//”yx + 35 (1)

by the help of which te following table is calculated:

Yx dax Yx ax r Ux dx
0 f 628 90 974 350 ! 1216
T 703 100 990 Q0= [ 1236
D) 747 120 1025 500 } 1266
30 44| 792 140 1054 GO0 il o 1287
40 834 | 160 1080 700 | 1305
Al 865 | 180 1102 iR e B
60 | 897 | 200 1122 900 | 1329
T Y BN 250 1161 1000 R
80 948 | 300 1192 1100 i 1346

By the help of these values, and applying the relation
Lt pintols
oy

we obtain the following table of values of the average velocity ot propaga-
tion and ol the values of the average characteristic ¢ for v,=1,5m, and v,= 3 m.
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Values of ¢ Values of ¢
Yo a - q, a 1
v,=15| 0,=3 =15 0,=3
1000 1184 0,09 0.18 120 861 0,55 1,10
800 1153 0,10 0,21 100 837 0,64 1.98
600 1110 0,14 0,28 80 809 0,77 155 |
500 1082 0,16 0,33 60 777 0,99 198 |
400 1046 0,20 0,40 40 739 1,41 283 |
800 1000 0,25 0,61 30 717 1,83 3,66
200 936 0,36 0,72 20 694 265 5,30
140 883 0,48 0,97 10 66O 2,09 0,18
1

which values, as can be seen, show that p ranges practically between 0.10 and 10,
as previously slated.

As a rule, I will use, in numerical examples relative to hydraulic power
plants, such values of ¢ which are of the order of magnitude embraced by
this table,

These systems ol values, moreover, are susceptible of easy and simple gra-
phic representation by means of a straight line diagram. As

" av,

29y,

p =

the characteristic p can be represented, as a function of v,, in a cartesian Sys-
tem of coordinates (Fig. 1), by a straight line passing through the origin; the
angular coefficient of this line will depend on y, and a, or, in ultimate ana-
lysis, on the normal head y,, so that the complete system of the values of g,
for all possible conduits (that is for all y,) and for all assumed normal velo-
cities v,, will be represented by a set of straight lines radiating from the origin
of the axes ¢ and »,; some of these lines are drawn on Fig. 1, which does not
need more explanation.

The great importance of the carfesian coordinates (see § 5) in the Theory
of Waterhammer confers a specific utility to this diagram, to which, in the
following study frequent reference will be made.

Refering to formula (10), let us finally observe that, as the characteristic 2
can assume values between 0.10 and 10, the ratio W,: W of the kinetic
and potential energy of the pipeline can correspondingly assume values
from 0.04 to 400, that is they can vary between limits which may make their
ratio 1: 10000,

This statement will make it easy to understand why phenomena of the
waterhammer, which are functions of the relative values of these two quan-
tities of energy, are susceptible of attaining very different relative values and
of following very different laws, according to whether the head is large or
small. The direct proof of these facts will be given when the laws of water-
hammer produced by diverse gate operation will be discussed.
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§ 4, — Discontinuity of the law of variation ot the pressure

If one operates the efflux gate (opening or ciosing) in a conlinuous way,
but in such a manner that at the beginning of the operalion the variation of

e

the rate ol opening 'E? is not zero, a sudden disconlinuily in the law ol pres:

sure varialion occurs corresponding lo the instanis = p, 24, 3y, elc, thatis
at the end of the phase of the direct blow and of all successive phases ol the

counterblow,
Differentiating equations (9) with respect to the time, we obfain

& &
4 - a2 — B | K
(& e 5 Pt ’ .
St a, o, B,
f 3 1 ; : T 4 1 : __;__.s : 9
C] ll)' % I _] I:{;, _| |.’I"I|J:,ll a f h (- q 3 r E.!_-, 3 I) {1 }
il A a_tﬂ il o T A aas - 2N ETIE ‘3"’13)
\ o [ flJ}a i | {ﬁq ] an}a f F( 4 a‘""i tu ai‘

in which the symbols with the index I represent values relating to an instant
t =1, where 0 <t, <, and symbols with indices 2, 3, 4, etc,, represent va-

lues relating to the instants

t=1t +p [ =1t + 2u = R S TR

that is the system (12) expresses the relation belween the values 7, §, and
their derivatives at instants separated by the time interval of the phase.
Applying this system (12) to the series of values

t =0, i —e T t = A, efe.,

which we will designate as instanls of the « tolal rythme », it is evident that
at the instant { = ix, which separates the i phase from the - 1", 1wo
oy
Pl ;B : ;
distinct values ol E?- can be considered, i. e.:

-

the value PE—C; corresponding to the last instant of the i phase

6Gi + 1 3 ; ¥
and » 0 —\E- b » first b BB i —|— 1t »
]
We will demonstrate that these two values are always dillerent, even assu-
)

ming a continuous law of operation, if the value ol ~ is dilferent from

f

zero at the slarl of the operalion.
[n this study let us assume thal the symbols

Nyr My, elc,

hl
o %

-'-lﬂ 81 ?':".':? E[E"J

represent the values of % and ¢ with respect to the instants of the total rylthme,
and we will designate moreover, by

o7 8 o ot
('a"r_)n (ﬁ) (8 r),.’ S
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the values of the variation of the 4 al the instants ol the total rythme;

6l oC.
by (T‘) and —3] :
i o f [ g t 1

the values of the variation of ¢ at the beginning and at the end of the first

phase; b
' aiq ’ e
by (33), and (57),

the values ol lhe variation of ¢ at the beginning and at the end of the second
phase; etc.
[n order to apply the systems (12) to the interlocking series of te values
corresponding to the first instants ol each phase; that is, in the instants
=4 fI=u L =2t e,
considered as the first instants ol the
5t 2nd J¢ " "nhases. ‘élel

we musl substitule evidently for
t =0

the symbols of the lotal rythme

in lieu of the symbols of the intermediate rythme

E a'r’h EEJ
s i EX 5
for =k

the symbols

. (B
£ (5

for the symbols

{ rj?l‘.' ﬁ':’;ﬂ
b 91, i
i : ol 51
for = 2uy

the symbols

- r Er‘) a:l)
fla SEE (Bf,_, T

for the symbols

"hl '\}r
7 - s o
s : 51 51’

and so on,
Observing that 4, =¢, =1, the syslem (12) becomes

: 6L, (E'q
a+o (3) 1),
1) (“) (o pm(t" (

& — ) (32) + (&t pnd (52) =

I
|
]

Q:li o
:"‘———"‘J‘-
I
0
e ety
- e 4
i ﬂpij?
P
il g

)

A
Wl o
—
:.-u.___.a-"

o
b
vy
““‘I-—-I"-"
1
I
-
—
e
s
e
o] @
s SR
‘-\f-‘(
e
SRy O
|
e
ALY
4]
—_—
c
—
[
o
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On the other hand, if we wish to apply the system (12) to the interlocked
series of values corresponding to the last instants of each phase, that is to the
instants,

I — u

w, t=2p 1— 3nseie
conceived as the last instants of the
151.-, Qru.l, I:«_{m‘.l.JI ele.

phases, it is not necessary to change the indices of the u and ¢, except as to
indicate thal they are values of the total ryihme, and we will substitute :

for
F— 12

the symbols of the total rythme

&
A r 2
¢ 3 (;)

in lieu of the symbols of the intermediate rythme

Iil1'! 1{;1 Eﬁ:ql a';-ﬂ1 2
Jf o f
for = 2u,

the symbols

. :f Efik 5:15

Ny =2 (rﬂ)ﬂ (EE) )
for the symbols

&7, ag

h el

(£ QJ at Ef 7
and so on.

The system (12) becomes therefore
: &g, | &1
& + pfhi(g?)t—— : -——pt,(gi)t

3. 3 : >
ﬁ: el 7]1.]' ('a_f) + (E_- T f“.’i::j (c-;\_;) i E’l (;ﬂf) 2 EE (E‘i) ] ? ete. {I4I'

Comparing (13) and (14) it is evident that

'BC,) _ f &C
(}I—rlj = the value of 57

al the end of the 1% phase from the 1% of (14) and

&g, ot 6l
(Bi‘)ﬂ — lhe value of 57

al the beginning the 2" phase from the 27 of (13), are numerically dilferent
values with the single exceplion ol the ease that at the beginning of the ope-

: e : .
ration (_’1) = (), in which case the 21d of (13) becomes

At/
£ s el )

L]
1
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which compared with the Ist ol (14) shows that

. _(atﬂ
-G
B i

(ﬁ), _( 61 )[‘

n the following study, 1 shall exclude this latter assumption, observing
that the variation of 7 is sensibly constant as a rule in pipelines feeding hydro-
electric plants to which special reference is here made.

We will therefore assume that the variation of + is linear and in all what
follows we will consider exclusively such series of values the law ot varia-
tions of which presents discontinuities at the instants of the total rythme.

It evidently follows that if a diagram of the pressure heights Yi = €% v, is
consiructed as a function of { for abcissa, this will present a broken line the
vertices of which will correspond to the instants of fhe total rythme

and in general

=) (L, 2., 3., ele

¥
having respectively the ordinates
”'-'1 1.-:-l? Y 1’?:” ﬂtc'

a7

Excepting certain special categories of pipelines, the investigation of which
is reserved for laler study, the maximum and minimum values of the pressure
will therefore occur at such instants of the total rythme, and we can say that
we have, in general, adequate knowledge of the laws of waterhammer for a
given method of operation, il we know the series of pressure heights of the
fotal rythme Y, Y, Y,, ete, which are generated near the gate section.

We will be satisfied, lor the moment, with the discussed general stalemenis
of the periodical disconlinuily ol the laws of watherhammer to which we will
return at the special studies of the different laws of gate operation.

§ 5. — Synopsis of the phenomena of waterhammer represented
in Cartesian Coordinates.

~ 7 It results from the fundamental equation (9}, as already remarked, that the
laws and the percentual intensity of the waterhammer phenomena depend
exclusively on the characteristic ¢ (in which are absorbed, with te exception of
the length L, all individual elements of the pipeline) and on the operation of
the gate, that is on the series of the proportional gate opening =+, n,, 1., etc.,
which occur at time intervals p.

Two pipelines having the same characteristic ¢. but different lengths and
velocities of propagation, will therefore show identical phenomena of waler
hammer if they are operated in such a manner as to produce equal values
Ty Ny Mg, €lc., of the rate of gale opening at homologuous phase intervals.

I propose to consider such pipelines and also the movements of their
gales as identical, notwithstanding that such operations had to be executed
evidently at different speeds proportional to the respective duration of the
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phases. It can be seen at once that the assumption of the duration of the
phase as the unit ol time simplifies and synthelizes the whole problem, in
other words it is equivalent to assigning to all pipelines the same common
length.

This is the third of the fundamental principles of the theory, stated in
X 1, constituting the key of graphical representation ol the phenomena of
waterhammer, which | will designate by the name of cartesian synopsis.

We have already observed that the operation ol the efflux openings, in
conduils to which these theories will be applied, is exceuted with a sensibly
constant speed, that is, the rate of variation of the efflux opening is sensibly
uniform per unit of time during the operation (linear variation), and such
speed is generally defined by indicating the total time = necessary to produce
complete closure reckoned from the state of regimen.

Assuming, therefore, the duration ol the phase as the unit of time, and de-
noting by 8 the total time of closure expressed in units of p

<]
=
3

r} S e [ m—— {-I 5)

n=1F — (16)

in which { is measured by the same time unit p.

[ the nature ol the operation (closure, opening or allernaling molion),
and the time 0 are given, all functions ol the pipeline during the perturbed
regime are determined, and all elements for the application of the fundamen-
tal system (%) which govern the laws ol the phenomena are known, )

We can therefore state:

If the operation of the gate is execuled al a uniform speed, the laws ol
the walerhammer produced are lunclions ol the lwo paramelers » (characte-
ristic) and 0 (a numeral delining the speed of the operation).

The reader should familiarize himsell with the conception that a pipeline,
insofar the phenomena of walerhammer are concerned, is complelely cha-
racterized by lhe two paramelers g and 0 and that such pair ol parameters, in
reality, represent a triple infinily ol identical conduits from the poinl of view
of walerhammer, thal is, the triple inlinity of conduits ol which the five indi-
vidual elements, i. e.,

Yy, == pressure height
a == velocity of propagation of the variable pressures
L = length of conduit
v, =— normal velocity of flow
v = lime defining the speed ol gate operalion

salisfy the two conditions:

av, arv

— [ — S
og U 2L

If the thickness of the pipe, as is ordinarily the case, is delermined on
the basis ol the static head y,, the velocity a becomes a function of y, (See
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§ 3) and the total of pipelines represented by the two parameters ¢ and 0
reduce to a double infinity.

The reader should, by means of numerical examples, familiarize himself
with the idea that this triple (or double) infinily of pipelines represented by
the said pair of parameters comprise very different conduits, although always
being within the limils of practical applications.

FFor example, the two conduits given by the following elements:

1° 9, =300 m a=1000 m/sec L =900 m »,— 3,60 misec = =9 sec

2° ¥=100m a=2840 msec L=300 m v,= 143 msec == 3,6 sec
are both represented by the parameters:
p = 0,60 =5,

[t should be observed moreover, that of the five elements which charac-
terize a conduit under pressure, the first three, i. ¢.: y,, a, L. are constructive
and in general invariable, whereas v, and = are [unctional and are frequently
modified, varying the flow of the pipe and the speed of the operation. By
such modificalion of either of these two latter elements the pipe becomes a
new conduit, in which the phenomena of waterhammer may present entirely
different laws from those applying when the original assumptions are consi-
dered.

Assigning therefore to the parameters p and ¢ all possible values between
the limils of practical applications, a double infinily of conduits is obtained
in which all possible pipelines are comprised and all possible speeds of gate
operation; but in reality, each of the conduits so defined by the pair of pa-
rameters (g, 0) represents a triple (or double) infinity of conduits which will
follow identical laws and in which the waterhammer will reach the same re-
lative values.

It is this grouping of all the imaginable conduits which makes possible
the systematic and complete study of waterhammer and the full utilization of
the theory,

The Cartesian Synopsis, the conception of which directly follows from the
preceding considerations, is a valuable instrument for the investigation and
representation of waterhammer phenomena. Assuming two cartesian coordi-
nate axes p and 0 (See Fig. 2), it is obvious that all the laws of the waterham-
mer phenomena, that is all the deductions and conclusions both of finite and
differential character, which can be drawn from the fundamental svslem (9),
can be represented graphically in the positive quadrant of the system (g, 0)
which graph, in the followifig, I have designated as the Carfesian Synopsis of
pipelines.

A point with the coordinales (¢, 9) represents therefore a certain pipeline,
or rather the triple infinity of pipelines defined by the parameters p and 0, and
the positive quadrant evidently contains all possible conduits.

We may distinguish:
conduits situated at a point of the synopsis; this point indicating a pipeline
the constructive and functional elements of which correspond lo the parame-
ters p and 9; and conduits situated on a line or in a zone of the Synopsis,
which will indicate conduits, the elements and consequently the parameters
of which vary between certain given, limits,

L. ALLIEVI. — WATER-HAMMER. 2
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For example, if one considers a pipeline. the initial flow of which can
vary between certain limits (with a corresponding variation of v, and conse-
quently of 2) this pipeline will be represented in the synopsis not by a point
anymore, but by a line A B (Fig. 2) parallel with axis g. Conversely, a pipe-
line with a constant initial discharge, the gate of which is operated with dif-
ferent speeds, will be represented by a line A C parallel with axis 0.

Finally, a conduit which ecan function with variable flow and variable
speed of gate operation will be represented in the synopsis by the area of the
rectangle corresponding to the limiling values of ¢ and 6.

We will adopt, as a rule. (See Fig. 2) the vertical axis as the 0 axis, va-
lues being measured downward. and the horizontal axis as te p axis, placing
above same the diagram of the characteristic (Fig. 1), which immediately fur-
nishes all the values of %, and p,, corresponding (for the case of a riveted
conduit) to any given value of ¢.

The sclection of the scales of the values » and 9 is evidently arbitrary,
but it will be found convenient to select a larger scale for ¢ and a smaller
one for 0, as, if it is contemplated to represent all practically possible pipelines,
it is necessary to consider values of ¢ equal to or liltle greater than 10 (See Ta-
ble in § 3), and values of 6 ranging to about 25 or 30. We will see that,
while te laws of waterhammer change sensibly from one zone of conduits to
the next in the sense of g, the contrary is true for changes in the sense of 6.

I wish to remark also, that while the quadrant of the synopsis embraces
all the possible conduitls, the several zones have different importance in a
technical sense, and some of them have no importance af all.

We can almost absolufely exclude the assumption that pipelines exist wich
are characterized by small values of ¢ and large values of 6, or large values
of ¢ and small values of 6.

The conduits characterized by small values of ¢ are evidently those of high
and very high heads (See Fig. 1) which naturally necessitate long pipelines
and therefore a large value of the duration of phase, so that even if the gate
operation is slow, it will result in small values of 6. On the contrary, the pipe-
lines characterized by large values of ¢ are those of low heads, which, excep-
ting special cases, need only short lengths of pipelines, that will have short
durations of the phase, so that even if the gate operation is rapid, they will
result in large values of o.

Use of the cartesian synopsis.

The cartesian synopsis can be utilized either as a diagram to find nume-
rical values or as a classifving diagram, but such uses car be only generally
shown at present, as a complete exposition cannot be made without invading the
field of special researches which will form the subject of the subsequent’notes.

We can, by help of the fundimental svstem (9), indicate in the plan of
the synopsis those curves which are the loci of pipelines for which the pra-
tically interesting phenomena to be determined range within certain given ra-
tios, and we can thereby plot valuable diagrams, for the quick investigation
of any conduit with respect to these phenomena

For example, the hyperbolic branch shown on the synopsis (Fig. 2) is the
locus of the conduits for which the ratio of the pressure of the direct blow,
during a closing operation, equals the value

C'i — %j = 115:-
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and it is obvious that by drawing a series of similar curves for a series of the
values ¢*,, we can construct a diagram of the pressures of the direct blow in
closure.

But we also can, always by the system (9), demonstrate that certain zones
of the synopsis (that is the conduits which they represent), show, for given
gate operations, certain particular characteristics, interesting from the point of
view of technical application; it is easy to isolate the zones in which these
phenomena are produced, so that our cartesian synopsis can effeclively serve
as a classificative diagram of the waterhammer phenomena.

For example, the hyperbolic branch s (Fig. 2) divides the plan into two
zones; that on the left contains all the conduils for which the maximum
ple&.aule of closure is due to the direct blow, wile the zone situaled lo the

‘ight of s contains all conduits for which the maximum walerhammer of clo-
sure is one of the pressures of the counterblow.

§ 6. — The circular diagram of the interlocked series.

Another useful instrument for the investigation of the waterhammer phe-
nomena is furnished by a rather simple metod of calculating graphically, by
means of circular diagrams, the interlocked series of values ¢, T, Gy, €, ele.
of a given pipeline (that is a given value of g) and of a given gate operation
that is a given series of the values =, 7, 13, 14, clc.

This 111(,[110{1 of graphical calculation is derived from the fundamental
equations (9), by observing that they can be interpreted as equations of cir-
cles.

Remembering that in our notation

70 = 1 o= 1,

the system of equations (9) can be writien in the form

(Lo — P'fin)ﬂ -+ (&, + FW.)E = ﬁg + o, + 2

@ —pn) + G + p1) = pn, o+ p, + 2 (17)
%G —eny) + @+ en) = o5 + pmy + 2
etc., ete.

It is evident that interpreting the {’s of even indices and the ’s of
uneven indices respectively as coordinates ol a point referred to rectangular
axes, equations (17) represent a series of circles, the coordinates of the cen-
ters and the radii of which are given by:

Coord. of Centers radii
10 (+ 7m0, — ¢1,) g0 + gn, + 2
2° '(+ PNy 90— F13) [/p'*w_,'er en, + 2 (17 bis)
3° (+ Py — p7) P + en, + 2

ele. ' ete.
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One can therefore draw such a series of circles, remembering that ¢ = 1,
and the successive values of '

‘:1a£a=ts:t-la Etc--_-

of an interlocked series can be constructed for any law of the speed of gate
operation, that is for the series of the rate of gate opening

N5 Me 9 Ms 5 N s €IC.
corresponding to the instants
Livgule iy ahitss t, + 2, .f1+3f"'“1 etc.

Taking, for this purpose, (See Fig. 3) the horizontal axis for the ¢’s of even
indices, and the verlical axis for the £ 's of uneven indices, then C,, (absissa
= gn, = p; ordinate = — py ) by the first of equalions (17) is the center of the
first circle. Draw line C,O and measure upon a normal to same at O the
value OK, =/ 2, then, by the first of (17 bis), C,K, evidently is the radius
of the first circle, v, .

A normal to the horizontal axis at A,, (OA, =, =1) will cut the circle y,,
in D, , and the segment A D,, will be evidently =¢,.

The second circle v, will have its center at C, (coordinates + g4,,—¢7,)
and its radius will be C,K,, determined by OK, = /2, this being drawn al
right angles to C,O. This circle will cut the horizontal drawn from D, at D,.
By the 2»d .equation of (17 bis) {, = A,D,.

Analogously the successive circles v,, v,, ete. can be drawn and the values
Gy y by, ete. determined.

Such graphical proceeding therefore furnishes a quick solution of the
system of equations (9) with respect to the unknown %, and it is pratical to
use for this purpose a large scale, because, in practice, not the values % but
those of §? are of interest, which values give the ratio of the pressure hei-
ghts,

z;.i = u_.l = E:
Wo Y,

and as small errors in the values of & may become sensible in the values
of &

It should be observed, however, that the importance of such graphical
proceeding does not lie in the quick solution of the system (9) for the deter-
mination of the values {' which define the variation of the pressure height for
a given gate operation. As already stated, such is not the real object of the
present research, which has in view the investigation of the general laws of
the waterhammer phenomena, and the furnishing of rational criterions for the
design of pipelines.

But, also from this point of view, the circular diagram of the interlocked
series furnishes an accurate instrument of research, because its geometrical
properties, as depending upon the method of gate operation (the series of re-
lative gate openings 7,,7,,n,) furnish an elementary method for the demons-
tration of interesting properties of the laws of the waterhammer phenomena.
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§ 7. — Technical problems and program of subsequent researches.

The preceding discussion has clearly shown how the study of the pheno-
mena of the variable motion in pipelines — the theory of waterhammer — can
be systemalically conducted by the help of the system of the fundamental
equations (9) and their derivatives, also by the circular diagram of the inter-
locked series derived from the system (9).

We shall now define the field and method of the succeeding researches,

We shall limit ourselves to typical problems and assumption of the linear
law of operating the gate, and first of all, will treat in detail the research of
the laws of the variable pressures in four principal cases:

(@) For the operation of closure, assuming that the proporlionate gate
openings 7, , 1,, n, constitute a series of values linearly decreasing from unity

(b) For the operation of opening, assuming that the proportionate gate
openings m,, 1,, 7, constitute a series of values linearly increasing from unity
(eventually from zero);

(¢} For an alternate closing and opening, with the same rythme as the
duration of the phase, in such a way that the proportionate gate openings will
regain the same value at each alternate interval of the phase, whieh results
in the phenomenon called the resonance;

(d) For the stationary gate, assuming that 7, 9,, 9, constant, alter the
flow was disturbed by a preceding operation.

We will treat, first of all, each of these problems by the graphic method,
by means of the circular diagram of the interlocked series; this method, wich,
in a sense, constitutes, a graphic theory of the walerhammer, will permit, as
already observed, to point out some of the more outstanding features of these
phenomena-

We then will start upon the analytical discussion of these problems, and
will determine, by help of the cartesian synopsis (See § 5) the general laws
which classify the double (or quintuple) infinity of the possible pipelines with
respect to each ol these four kinds of operation.

The reader will be able to see that these problems which are seemingly
extremely complicated, are susceptible to elegantly simple solutions; for exam-
ple, the drawing of a single circle of the diagram of the interlocked serie gives
the six limiting values of technical interest of the variable pressure, i. e., two
each for the three movements of closure, opening and alternate operation of
the gate.

Moreover, the diagrams which we will derive from the cartesian Synopsis
will permit to quickly solve the problems, concerning the rational design of
conduits (the selection of the arbitrary elements) and also the finding of those
gate operations which produce dangerous effects and the selection of the limi-
ting conditions for each category of pipelines.

These studies will be folloved by a study of the law of propagation of the
instantaneous pressures along the conduit and of the influence ot the varia-
ble diameter in reducing or iucreasing the intensity of the propagated pres-
sure.

Finally, the problems relative to the law of the variation of the kinetic-
energy of the fluid jet in closing or opening will form a second class of exhau.
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stive analytical studies, the knowledge of which laws will determine rational
criterions for the regulation ol the turbines.

In my preceding monograph I have already pointed out the conditions under
which the kinetic energy of the fluid jet can increase in the lirst instants ol a
closing operation. I will extend, in a more general way, this study to the
whole phase of the direct blow and the successive phases of the counlerblow
and will point out, with the help of the carlesian synopsis, the law of these
little known, or entirely unknown, phenomena.

It will result from this research that for large enough values of the cha-
racteristic (that is for small heads) the increase of the kinetic energy of the
fluid jet in closure may make it difficult, or even impossible to regulate the
turbines in the ordinary way, which inconvenience can only be partly reme-
died by the addition of synchronously acting relief valves.

We will finally show how similar phenomena can be partially decreased or
suppressed by the use of piezometric tubes or airchambers, which latter were
already discussed to some extent in my preceding paper.




NOTE Il
WATERHAMMER IN CLOSURE.

§ 8. — The circular diagrams of the interlocked szries at closure.

The graphic method derived from the circular diagram of the interlocked
series (see § 6) furmishes a very elegant solution of the problems of water-
hammer arising when the gate is being closed and permits the rapid deter-
mination of the successive members 2, %, ¢, . . . G of any interlocked series for a
given conduit and method of operation; it also acquires a parlicular impor-
tance in view of the observation in § 4 which states that for an operation
executed according to a linear law, the law of the pressure variation is subject
to periodical discontinuities, and the pressures platied as functions of ortho-
gonal co-ordinates, present themselves as a broken line, having vertices cor-
responding to the instants of the total rythme.

As already observed in § 4, the series of pressures ol the total rythme,
therefore, contain (exeept in special cases) maximum and minimum values of
the pressure during the closing operation (al any rale values of close proximily
to maximum and minimum), so that the rapid determination of the & ol the
total rythme by means of the circular diagram of the interlocked series cons-
titutes undoubtedly an important, if not complete, illustration of the water-
hammer due to such gate operation. In the following discussion I will the-
refore use the circular diagram of the interlocked series principally to deter-
mine the & of the fotal rythme, assuming that the closure is executed by the
linear law.

Applying the graphic construction shown in Fig. 3 (§ 6) to such deter-
mination of the %, it is easily seen that as

Py ey oy etc.

constitute a linearly decreasing series, the resulting diagram will have the fol-
loving properties (fig. 4 and 7):

ist. the centers C,, C,, C,, etc.,, of the successive circles, v,, v1,, 1., ete. all
lie on the same straight line, forming 45° with the axes and passing above the
origin O. :

9nd. The circles v,, Ys, Yo €tc. all pass throught the same point M of the
bisectrix of the right angle formed by the axes (mormal to the locus line of
the C’s), the equal co-ordinates of which point we will designate by Zm.

The first postulate is evident from the linearity of the series of values,
which, by couples and opposite signs, give the co-ordinates of C,, C,, G, etc,
successively, while the second can be easily demonstrated by proving that the

distance OM is the same no matter which is the center C; from which the
circle v, is drawn.
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Consider, for instance, C, to be the center ol circle y,, and remember the
sequence of the construction (see § 6) which is as follows; on a normal to C, O,
in O, measure a distance { 2= OK, and drawn the circle y,, from the center C,
and radius C, K, the intersection of which with the bisectrix will give the
point M (fig. 4 and 7).

Let . be the intersection of the bisectrix with the line connecting the
centers, then

IM —CM —(CO —LO)

and, because

CM =CK =CO +0K =CO0 +2
the first equation will become
LM =LO + 2

which is independent of the position of C, on the connecting lines.

M being determined in this manner by means of the circle y,, it will be
easy to draw the other circles with the centers C,, C,, C,, etc. and the radii
C; M,

For the construction of the successive values of [, we follow the pro-
cedure of § 6, in drawing (see fig. 4 and 7) a vertical at the point of which
the absissa is £, = 1, the ordinate of the intersection ol this line with the
circle vy, being ¢ ; draw a horizontal through this point to intersect with v,
the absissa of the intersecting point being L ; from this point again draw a
vertical to inlersect with v, at a point the ordinate of which is equal ¢ , and
so on as illustrated in figs. 4 and 7.

It also results from these figures that the centers C,, C,, C,, elc, being
situated alternately on both sides of the foot L of the bisectrix, approach pro-
gressively this point L and that the lengths of the ¢, &, &, etc., tend toward
a limiting length equal to & the ordinate of the point M.

In tact, the extreme points of the co-ordinates &; (see the large scale detail
figs. 4 bis and 7 bis) determine a reclangular polygon, the sides of which cons-
tantly diminish in length, and the summits of which progressively approach
the point M., This geometrical configuration permits therefore to conclude:

That the interlocked series {; tend to a limiting value &n, and therefore,
the interlocked series of the pressure heights Yi = &' y, tend toward a limiting
value Ym = &’ %,

In the following discussion I will refer exclusively to the relative (per-
centual) value of the pressure, but will designate by the word « pressures » the
relative pressures §* or &m'.

The diagrams of the interlocked series permit, moreover, to deduct some
important conclusions upon the law by which the pressure approaches the
limiting value.

-

1st Case

Examining first the diagram fig. 4, drawn for ¢ < 1(p =05 and 0 = 4), it
is noted that the first center C, is located necessarily to the left of the vertical
through M, from which it results that £, is always > Cm.

As, however, the second center C, is located necessarily below the hor-
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izontal through M (we have evidently g1, < p < 1 < L) it resulis that, on the
contrary, %, < lm.

It is easy to conclude that by analogy that the successive & will be alter-
natily. = tm.

In the slated case therefore the law of pressure in closure is oscillatorily
asymptotic to the limiting value, as shown on the diagram fig. 4, and it is
clearly shown by fig. 4 that the stated law is always verified when ¢ <1
because on this assumption the centers C;i of uneven indices are located to
the left of the vertical through M, and the center C; of even indices are below
the horizontal through M.

In this case, the first pressure of total rythme £° (the pressure of the
direct blow) is the maximum of the series of pressures of lotal rythme due
to closure, and may be considerably larger than the limiting pressure of
m’; this is easily demonstrated by drawing the diagrams of the interlocked
series for small values of p and 6. Fig. 5 gives the values of £, and Inm for
p = 0.64 and corresponding to 4 kinds of gate operations, defined respectively
by 6 =4;2;1,33 and 1 (*). Graphically, and with sufficient accuracy we get

for 0 =4 ¢ =110 Gn=108 {°: %' =104

=D e 1 0 B i . Lt — 1500
s — 1,83 » =136 Vs =121 » —:1.15
» =1 » = 1]51 » = 113? w — 1,21

The first pressure ol the total rythme, which, as pointed out, is the largest
ol the series of the total rythme, can nevertheless, for small values of 6, be
smaller than the pressure of the intermediate rythme which occur at the
beginning of the second phase, but as the graphic method is nolt very ap-
propriate for the investigation of this singularity, the reader is referred to the
more complete discussion ot this problem in § 13.

2nd Case.

If, to the contrary, we examine a circular diagram, drawn for p substan-
tially grealer than unity, as for instance that of fig. 7 (where ; =2,0=25) it
is observed that the first center C, is situated to the right of the vertical passing
through M (whatever be the speed of the gate operation) in such a way that

& < im.

Moreover, as the second center C, is situated above the horizzontal passing
through M, there will result that { < 4.

But the third center C, being a little to the left of the vertical passing
through M, we again will have {, > In, wile the successive Gi's will be al-
ternately < m.

(*) If § =1 that is n, = 0, we have complete closure in the phase of the direct blow: which
I will call a “sudden closure ”, In this case, the first equation of the system (9} gives

tt=142p (see § 9)

For p = 0,5 we have therefore , = V2 and the pressure of the sudden closure is twice the

normal.
For s = 1,5 we have {, = im = 2, and the pressure of sudden closure is four times the normal.
These two cases of sudden closure are illustrated in fig. 6.
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We have therefore an example of a clossing operation of such effect that
{he first % °,Z,° pressure heights of the total rythme are < ‘m®, each of them
being, however, greater than the preceding, until one of them becomes larger
than the limiting pressure %m, from which instant on the pressure becomes
oscillatively asymptotic to {m as in the preceding case.

The law of the pressure in closing presents itself therefore in the form
as indicated in the diagram fig. 7 fer and the maximum pressure of the total
rythme is the one which first exceeds the limiting value Zwm®. This maximum
pressure can occur in the 2nd, 3rd or i of the series, in other words the
case contemplated is characteristic of the law of pressure of the diverse cases
pertaining to the 2nd case, for which it can be stated that the maximum pres-
sure in closure is practically little different from the limiling value m.

Limiting Cases.

I have remarked that Case 1 alwavs oceurs if ¢ < 1; but it may also occur
(that is, we may have £, > Um) if ¢ is slightly > 1 and the gate operation is
executed with sufficient speed. It may be seen from fig. 7 that, pulting p > 1,
the less the co-ordinate — v, of C,, i. e, the more rapid the gate operation,
the more the point M is displaced towards the right, so that if ¢ is very little
> 1, this displacement may be sufficient to make %, > Im. |

This is examplified in fig. 8, in which, for p = 1,12, the values of g, and
¢.. are constructed for a gate closure in a time 9 = 4, also the values of {, and
Um for 0 = 1,15. This diagram shows by inspection that while §, < &m, on the
contrary .’ > Um and it is obvious that a velocity of closure can be found for

«which Z, = Cm.

This limiting case is illustrated by fig. 9, from which it will be seen that

the condition for ils occurence is that the verticat through C, must be equi-

distant from the segments delerming ¢, and Zw, that is we have
cid 1o
0 — — =
i 2 { L) 9

and it is obvious that, for this assumption
=== G,

i. e., all the pressures of the total rythme will be equal to the limiting value
¢.*. This limiting case is evidently the transition from the case in which
¢.* is the maximum pressure of the total rythme and the case in which the
maximum pressure is L.

In the same way fig. 10 illustrates the limiting case I, = im which will
occeur when the ordinate of C, is equal to the mean of %, and Zm, or

1

= (&, 4 Sm)

by which condition we have

o
L
L1
1]

-
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that is all pressures of the total rythme, beginning from the second are equal
to the limiting value.
This limiting case is evidently the transition from the case in which %°

is the maximum pressure of the total rythme of closure, and the case in which
the maximum pressure is Z.°

In general the ¢ of the tolal rythme are equal to Im* beginning at the
ith, if the condition is satislied that

et e TJ-{ii 1+ &m)
which is the transition from the case in which %*® is the maximum pressure
of the total rythme of closure, and the case in which the maximum pressure
is -ﬁ‘i..t.t.

Exireme Limiling Cases.

But it is also possible that p is large enough and 6 small enough so that
no pressure of the total rythme will reach the limiting value Zn® in which
case the series of pressures give a growing series of values, the last term of
which is a maximum, but nevertheless < Z,,°.

In order that such a case should occur it is necessary that all the centers
Ci (excepting eventually the last) shall be located as follows:

those with odd indices to the right of the vertical passing through M;

those with even indices above the horizontal passing through M;

and the possibility of such location of the centers C; results directly from
the configuration which the diagram of the interlocked series assumes for large
value of ¢ and small values of 0. Considering, for instance, fig. 7, it is evident that
increasing indefinitely the value of ¢, the center C, will be displaced and will
be finally located above the horizontal through M, in which case the said
condition would be satisfied. '

At the end of § 5. T have observed that, in general, pipelines characterized
by a large value of ¢ (low heads) and by a small value of 6 (rapid closure)
can be excluded from consideration of normally functioning conduits; they
can be, however, hypothetically considered because their study permits of
determining those gate operations and speeds of operation which should be
avoided, and moreover, pipelines in which the phenomena of constantly in
creasing pressure occurs are yet within the limits of possibility of technical
application, however exceptional they may be.

The reader could, for example, prove by means of a graph similar to those
shown, that this case occurs for 8 = 3 if p = 7 (for example y, = 20, pEs=8 S
m. per sec., d = 800w, L = 600m., * = 4,5 sec.) which conduit so characterized,
while abnormal with respect to the excessive velocity of closure could nevertheless
be occasionally met in practice; with the data given the reader will find that
¢, = 2,7, and that therefore the relative value of the pressure at the instant of
closure is %" = 7,3 which value accentuates the abnormal conditions of the
functioning of the pipe.

With this limiting case all the possible forms of the law of pressure in
closing are exhausted.

The single graph of the diagrams of the interlocked series has therefore
permitted to establish the general form and some of the important features of
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the complex phenomena of waterhammer in closure, but its accuracy is in-
sufficient for the pursuit of the systematic generalization of the numerical laws
which govern these phenomena; such discussion can only be treated by means
ol analylical methods and by the use of the cartesian synopsis.

I wish, finally, to call attention to the two practically important results of
the preceeding investigation.

Ist. — The maximum relative pressure of the total rylhme in closure can be
the first of the series L* (pressure of the direct blow) or any successiwe U, which
have the property of being liltle different than the limiting value (m’.

2nd. — The valaes €, and Uy are oblained by the drawing of a single circle,

Y, of the diagram of the inlorlocked series.

It will be shown in the successive Notes that this same circle furnishes
equally the characteristic elements for the opening and altlernate operation of
the gate.

§ 9. — The pressure of the sudden closure.

Before proceeding with the general analytical discussion of the laws of the
pressure in closure due to any duration of the gate operation, we shall briefly
illustrate the simple case in which 9°= 1, and the complete closing operation
is executed in the phase of the direct blow.

In this case the value T* of the pressure increases up to the instant of
complete closure, corresponding to the value ¢, | which is obtained * by putting
7, = 0 in the 1Ist of (9)

igﬂ_lzg.:{l—rql taj; {g}
from which is_ obtained. ™
=1 - 2. (18)

It can be seen that if.0 < 1, and the gale remains closed, the pressure will
remain at the constant value 1 + 2p up to the end of the phase, that is, up to
the instant { = p, at which time it enters the regime of oscillating variation,
defined by the system of equations (9), putting

which case will be discussed in a subsequent note.

Equation (18} thus furaishes a second interpretation of the characteristic Bs
which can be defined as the half of the relative surpressure of the sudden
closure, i

This surpressure is therefore smaller the smaller p, that is, it is smaller
(and therefore theoretically less dangerous) at high than at low heads.

* See also footnote on page 4, and the extremely simple construction (Fig. 6) which gives
the value g,.

av - -
2, which expression was

** From (18) it can obvionsly be written Y, = (1 + 2p) 7o ='_1;[, +

alrealy given in the monograph of 1902,
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This statement, which at first might seem to be paradoxical, appears, on
the contrary, as intuitively logical with reference to the intrinsic significance
ot the characteristic p, which was shown in § 3, to be a number equal to half

r

of the square root of the ratio W, of the kinetic and potential energy of the

W
conduit.

Now, as the normal velocity of flow in the pipe is always within the same
limits for low or high heads, the kinetic energy W, can be regarded as of the
same vatue for low or high heads, while the potential energy W is the greater,
and therefore p smaller, the higher the head. It is thus evident that the larger
the potential energy W, the smaller will be its relative increase resulting from
the absorbtion of all the kinetic energy of the liquid column, which is ac-
tually oceurring in the case of sudden closure; and finally, the relative sur-
pressure of the sudden closure will be the smaller the smaller is p, which is
clearly expressed by formula (18).

With the help of the limiting numerical values of p (see § 3) it is easy to
demonstrate that the fear with which the rapid closure of pipes with high heads
is often regarded, and which fear is to an extent justified by the violence of
the phenomena which follow the rupture of such pipes, are, nevertheless, wi-
thoul rational foundation. '

It can also be seen from (16) that, for a pipeline, the thickness of which is
caleulated on the basis of a permissible stress equal to 1/4 or 1/5 of the ulti-
mate strength, the limit of rupture can not be reached by the effect of a sud-
den closure, except if p> 1.5 or 2, while for ¢ < 0.25 (heads of 200 to 300 m.,
see fig. 1) the superpressure of the sudden closure does not exceed 50 9%, of
~ the static head.

After having analysed the phenomena of the resonance we will be able to
state that for conduits having a characteristic ¢ sufficiently small, it is practi-
cally impossible to operate the gate in such a way as to generate waterhammer
of sufficient magnitude to rupture the conduit, and only pipes of defective
workmanship can burst.

Pipe lines for high heads should therefore always be tested for the pres-
sure of sudden closure, by effecting the gate operation of complete closure in
a time somewhat smaller than p, the duration of the phase. A closure of very
short, or praticalty instantaneous duration might, on the contrary, send along
the pipe a wave of sudden superpressure, which, propagated to the upper parts
which are necessarily less thick, will induce in certain cases dangerous stresses,
but. I reserve the discussion of this point for a special note.

§ 10. - The general laws of the pressure in closure.

If the operation of the gate closure has a duration > p, the study of the
laws of the pressure in closing is contained in a systematic analysis of the in-
terlocked series of the values & . delermined by the fundamental system (9)

P+ —2=2 (0,5 —m %) )
2

L] L] * " " " - - " - -
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for diverse values of the characleristic ¢, and assuming thal the degrees of
opening 4, , M, M, 57, ..... ni constitute a linearly decreasing series from Ve s=d]
to zero.

We have already seen in § 8, how such study can be made partially by
the help of the circular diagrams derived from equations (17}, and such gra-
phical study has furnished easy and elegant demonstrations of some of the
laws of pressure, in a synthetically instructive form.

I am going to undertake now the exhaustive anal tical investigalion of the
problem with the special view of deriving the carlesian synopsis and diagrams
which give a complete illustralion of the pressure for all the possible catego-
ries of pipelines,

The laws of the pressure in closure are governed by the fundamental prin-
ciple already partly demonstrated graphically in § 8.

During a closing operalion of the gate according lo a linear law, all inter
locked series of the values G (which may or may not be of the tfotal rythme)
lend loward a limiting value T, which is independent of the value a of the ve-
locilty of propagation.

If such limiting value exists, it obviously can be determined by the equa-
tion oblained in pulting

E:i—‘.l == Ci — :m

in any equation of the system (9) and because

[

M=t =M=

»
the equation which gives the presumed limiting value Z, will be (*)

y 3

tw? — Bl —1=0 (19)
(*) Taking the pressures fs unknown, and introducing in equation (19) the notation

it becomes after squaring 1 p
—-2z(14 D) ‘T) -1 =0.

which with regard to (20) is nothing else than equation (36) of my first monograph, which.
I there obtained through a differential procedure of apparently dubious legitimaev, 1 arrived at
this result by putting the condition

Y

— =0,

=]

=T

which is, in a sense, an illegitimate procedure as Y does not vary in a continous way but by
a law which shows rythmic discontinuities. The obtained resulls, however, are not false, he-
cause, while the interlocked series Y, , Y,, Y;... etc, tend to the limit Ym, the interlocked series

= 2 r

[ 1 = ] . ¢
-:—T— tend toward zero, and the condition lim (‘a‘? =10 is equivalent to the condition lim Y =Y

The fundamental principle which was just given is, however, the only one which gives the trne
significance and importance of the equations which determine the limiting value of the closing
pressure.
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"

from which it appears that Zw > 1 and that it is a function of the ratio ?;

only; and, as this ratio
av, darc Lv

e = — 2 2“
29y, 2L gy, i

£
6

it is independent of a which is also true of %wm, and which proves the 2nd part
of the above statement.

It remains now to prove the first part, i. e, that &, is effectively the li-
miting value of the interlocked series,

Considering any interlocked series (either of total or of intermediate rythme)
and generalizin{ the slatements made in § 8, for the series of total rythme,
it will be demonstrated

(A) that the values of the said series may all be inferior fo the limiting
value given by equation (19), or

(B) that one of the members of the series, for exemple &;, may be greater
than &, in which case the successive numbers (i , G2, ete. will be alterna-
tely smaller and larger than &,

Writing equation (19) in the form:

m + ' —2 = 2p (4i—1 lm — i {m)
and deducting it from the general equation (9)
Cici+ 4 —2=2¢ (i1 8i-1—m ),
we obtain
P 4+ 5" — 2 P =2p1i—1 (§it — Cm) — 287 (5 — %m)  (21)

which can also be written in the form

2p° j=1— ?i— . 4 Bl T
F:: -11 ‘::’r 1 r_'_; -I = -:I'I vt-. . (22}1
= [ N "f“ Si T Sm tm = il =l

If, therefore, %i—: is yet < &, and if the numerator of the first member of
(22); is positive, the second member will also be positive and therefore also
G < Gm.

It follows that if §; is the last term of the interlocked series (that is n; = 0),

all terms of the series will be smaller than &.

; But, if, on the contrary, & is not the last member of the series, and if,
through the decrease of #, the term 2p7;-1 becomes so small that the nume-
rator of the first member of (22); will be negative. the same will be true of the
second member and therefore necessarily & > Zn.

I state, moreover that on this assumption the successive terms &1, %i42,...
must be alternately = .

To prove this let us write equation (22); for the terms of indices i and i + 1

2p 7 — & — & et
= 22) 4
2[:' 41 "l""rri'-l-l + Zm oo ( )’+1
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and, as the numerator of the first member of (22 ; is negative, the numeralor
of (2231 will be also negitive as & > &m > Li—1; the second :member, there-
fore, will also be negative, so that, because of § > {x we will have G+ 1 < L.

This reasoning is of an entirely general character; the {wo members ol the
successive equation (22)iy2, (22)iys elc., are, therefore, always negative and the
successive terms of the series are alternately Z Im.

Beginning at the first phase, the broken line of the orthogonal diagram of
the pressures ¢*, therefore, cuts the horizontal I* = {»* at equal intervals having
the value of the phase, at points the ordinates of which constitute an inter-
locked series of intermediate rythme and having a constant value %;* = i’

This admitted, it will suffice, for demonstration that &' is truly in every
case the limiling value of the interlocked series, to prove that:

- 1. If the values of the terms %; of an interlocked series remain smaller

than &, the following inequalities must stand:
tm—ﬁl :-‘-" :m—z_:: }.---:} im—"ii

2. 1f a term & of an interlocked series is > L, so that the succeding terms
are alternately = ¢, the following inequalities must stand

cm o= zi—l N‘"‘ ti — E;m :‘} tm —_— Ci-!-l -, etc..

The first statement will be demonstrated by proving that, if the two
members of equation (22; are positive, they have a value less than 1, thatis,

2emi1 — L1 — tm < 2e0 + 5 + Lo
or

1
?{"’ii—l'—“"ti) < Um + ;'jl:ti—l + Ci)

The truth of this inequality is apparent by observing that on account ol
equation (19).

1

i]‘: ﬁln—i_“:

g (i1 — i) =

To demonstrate the second statement, observe, that, given
;i 1—im < o0 ti—ﬁm::-"ﬂ,

the second member of (21) is evidently negative and so will be the first member
from which
D1+ 4GP —20L"< 0
:mf B ::;i—l ‘_:3' :il e, tmi
or
:Ill —'{1—1 > ti = tm

The second part of the statement being also demonstrated, we can assume
that %w is, in every case, the limiting value of the interlocked series &; .

1 - gl
L e g R, L T
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In conclusion:

The terms of an inlerlocked series T, ,¢, ......%, can all be < &m, or, if one
of them is > U, the successive terms are alternately = 4.
In order that a term % of the series shall be > T, it is necessary that the

numeralor of equation (21 be negative, that is. that the preceeding ferm & i, sa-
lisfies the condition,

Hp'qi—_l ":: ti—l -+ tm; (23}
if on the contrary, one has
2{33’,5—[ f— E;i—l + E'I'H} (?"’l}

it is evident that for all terms of the interlocked series we wonld have
G = L= s e e

[dentical laws control evidently the interlocked series of the pressures
G st iee.. §i®, which have as their limits ¢w®, as the form of equation ol
condition (23) and (24) remains naturally the same.

The here stated laws are applicable to all interlocked series whether of

the intermediate or of the total rythme. (%)
STANDARD FORMS OF THE LAWS OF THE PRESSURES IN CLOSURE (Fig. 11 to 17),

Applying the preeceding results to the series of the pressures of Lhe total
rythme due to closure, it will be possible to establish systematically the cha-
racteristic standard forms of the pressure and consequently to represent, by
means ol orthogonal diagrams, the several forms of the pressure law which
resull rom the conditions (23) and (24),

Putting sucecessively 1 = 1, 2, 3, 4, etc. into these equations, we will consider
them in this order.

First case, i = 1.

From 23)....2p< 1 + Um,
where L must be expressed as a function of pand 9 by means of equation (19).

[ this condilion is salisfied. the first pressure of the total rythme which
surpasses Lhe limiting value u* is the pressure of the direct waterhammer ¢ °;
the general form ol the pressure curve is then represented by the diagram fig. 11,
and the pressure of the direct blow £’ is found to be the maximum pressure
ol the series of values of tolal rythme; it is, moreover, excepting certain spe-
cial cases which will be discussed laler, (§ 13), the absolute maximum of the
pressure in closure, .

This is the same case which has already been studied in § 8 and which
is represented by figures 4, 4 bis, 4 ter and 5.

("} Equations (23) and {24) were established in § 8, based upon simple graphieal considerations
which are susceptible to serve as a starting point of a real graphical theory of the watler hammer ;
the discussion and use of these equations, however, can only he done by the analytical way;
hey can, moreover, be graphically interpreted only by means of the cartesian Synopsis.

L. ALLIEVI. — WATER-HAMMER. 3
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Taking now the limit of equation (24) 2p=1 4 Inm
we have (' =¢n" and also {* =L '=C("=..... G ;

the form of the pressure curve in closure is therefore that represented by fig.
12; the pressure reaches a limiting value at the end of the first phase and
remains almost exactly at this value throughout the remainder of the closing
operation.

This case is evidently a transition to the

Second case, i = 2.
From (23) we have: 2om, < &, + Cm,

where Z, and %. can be expressed as functions of ¢ and 0 by help of the first
equation of the system (9) and equation (19). The pressure of the total rythme
which first surpasses the limiting value I is the first pressure of the coun-
terblow %,*; this pressure is at the same time the maximum pressure of the
series, and the form of the pressure curve in closure is represented in fig. 13.

Putting, as a limiting case 20m, = §, + &=,

the pressure will grow during the first two phases; it will reach the limiting
value Zm® al the and of the second phase and will approximately retain this
value during the remainder of the closing operation, as shown in fig. 14. (see
also the circular diagram fig. 10).

Third case, i =3

From (23):  2pn, <, + L,

in which ¢, can be expressed in terme of p and 0 by the first two equation of
(9) and %m by equation (19).

The pressure of the total rythme which first surpasses the limit &y" is, in
this ease, £."; this is the maximum pressure of the series and the form of the
pressure curve is represented in fig. (15).

[n the limiting case  2p7, = L, 4+ Cu,

the pressure will grow during the first three phases up to the limiling value
tm® which will be approximately constant during the balance of the closing
operation.

Ete. etc.

[t is evidently superfluous to continue this demonstration of the results
which are similar throughout.

Extreme limiling case,

But if the conditions (23) and (24) are not reached lor any ol the pressures
of the total rythme during the closing operalion, the series ol closing pres-
sures will continuosly grow; the pressure can however, in the last phase,and
at an instant of intermediate rythme, reach or surpass the limiting value &w.* as
shown in fig. (16), or not reach it at all, as indicated in fig. (17).

The analytical investigation therefore confirms and completes the stale-
ments made in § 8; the reader has, in the fig. 11 to 17 the standard form of
all possible laws of the pressure curve in closure.
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The extraordinary variety of form of these standards show why the at-
tempts made to express these laws by a single equation must necessary remain
futile. | :

The logical study of the conditions under which any of these standard
forms is realized, reduces itself, therefore, to the study of the equations which
result in each particular case, from the application of the conditions (23)
and (24); I will deduce from this study, with the help of the carlesian synopsis
described in § 5, the criterions which will serve as a basis {o the classification
of conduits from the point of view of the pressures of total rythme due to
elosure. '

§ 11. — The Cartesian Synopsis of classification of conduits, from

the point of view of the maximum pressure of the total rythme,
due to a closing operation.

From consideration of the relations (23) and (24), noting that

i—1
6

Ni—1 = 1 —

while &1 and %+, from equation (§) and (19), are functions of p and 6, it
evidently results

A) that the relation (23)

2 f7i— £E Ci—1 + Cm

into which successively i = 1, 2, 3, etc. are introduced, generate a series olf
inequalities between the functions p and 9, each of which, interpreted in the
cartesian synopsis (see § 5) determine a zone ¥; which contains the double
(quintuple) infinity of the conduits for which the law of closure has the same
form as those ol the cases illustrated in fig, 11, 13, and 15; this form, more-
over, depends on the value attributed to i, as we have seen it in the preceding
paragraph.
B) that the relation (24)

2 pni—1 = Q=1 + fm, (24)

in which successively i =1, 2, 3, etc. are introduced, generates a series of
equations belween p and 0, which, interpreted in the plan of the cartesian
synopsis determine the set of the lines si which limit the zones Z;; each of
these lines is the locus of a single (quadruple) infinity of the conduits, for
which the law of pressure in closure has the form defined by one of the
diagrams fig. 12 and 14, in which the pressure reaches the limiting value in
an instant of total rythme and remains sensibly constant at this value until
the end of the gate operation.

The plat of the cartesian synopsis (see fig. 18), which we will now study,
will give the reader a [irst concrete example of the use it can be put in the
investigation and systematic representation of the laws of the waterhammer
phenomena.
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It will be useful to remember, at this junction, the fundamental sys-
tem (9)

I

t;ﬂ — ] 2? (1 gt {1 tl}
CAF L —2=20(1,8 — M &) (9)

i) G — 2 = 25 (i1 §i— — M Gi),

I 2 I
'fh-‘TI—‘-ﬂ'r "l-;-“—"‘i—;jw.-?nf:l—ﬁ:-
and also equation (19)
G — :';‘{:m —1=10 (19)

which gives the limiting value toward which the series converge,
GENEHRAL PROPERTIES OF THE LOCI Si.
[

The loci si are curves which possess, in the positive quadranl ol the
synopsis, a branch of hyperbolic form having asymptotes parallel to the
axes, 1, e.:

Ist The loci si have a common vertical asymptote being the line

g ==

H
2nd Each locus si has as its horizontal asymptote the line

0= i— 0.

The first of these postulates can be demonstrated by putting 0 = oo (which
is equivalent of the slowing down of the operation indefinitely) and evidently
obtlaining

Lim. fie=1 Lim. {i—1 =1 a3 Gt —=als
which values, introduced in (24) give as the equation of the common asymplote

of all all loci si, p = 1, which demonstrates the truth of postulate 1.
To demonstrate posiulate 2, observe that from (19)

from which, for p = oo:
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in the same way, from the system (9), we obtain, aiter dividing by ¢* and
putting p = oo, the system:

5 4
Lim, (—‘)': — 2n, Lim, (_l)j
P e
4 4 g 4
i (2 i (5= 2, 1 (3] 2. )
ele. ete.

which necessarily result in

Lim. t—’: Lim.c—'z. o .=Lim.EE= 0.
P P P

Dividing equation (24) by ¢, pulting ¢ = o, and introducing the values

r t.r‘
. = -1
obtained for = and ==, we gel
P
‘ I~ 1veid
2o =2(1 — =)=,
or, reducing h =1—05; (25)

which is the general equation of the horizontal asymptote of the loci si, which
had to be demonstrated.

This demonstration may seem somewhat hazy to the reader who has not
yet familiarized himsell with the use of the synopsis; but this is a first typical
example of the simplicity, elegance and generalily of this method. The ac-
curacy ol the preceding postulates, moreover, will be shown by the study of
the curves si, which I now will undertake (")

THE ZONE ¥, AND THE LOCUS s,.

[f, in equation 123) we put i = 1, as already observed in the preceding §
there is obtained the relation:

20 < 1+ m (26)

which, after eliminpting £, by means of equation (19) and after some reduction
gives
46 — 1

e Elas ok

1 —2°

(') Only that portion of the curves si situated in the positive quadrant (4 2, 8) will be
studied here; the branches of these curves situated in the quadrant (| p,— 0) also interest us
as they find their application in the theory of the waterhammer of opening; the change of the
sign of 0 is in fact equivalent to the change of the direction of Lhe gate operation. [ only note
here thal, in the quadrant + o, — 0, the curves si constitute a set of hyperbolic curves contained
between 3 =0 and 2 =1 as a common asymptote; for more delails, see Note III (which is the
study of the opening operation} and the corresponding caifesian synopsis,

R— —
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which characterizes those conduits, the pressure in closuie ol which has the
forni” represented by fig. 11. This condition, as a rule, is always salisfied
when p =1 as already demonstrated by means of the circular diagram ﬁg 4

(§ 8); on the other hand, if ¢ > 1 the relation includes the iwo cases {El Cm)
rep:esented by the circular diagram fig. 8.

The zone E,, embracing the conduits characterized by the relation 26), is
limited, in the field of the cartesian synopsis, by the curve s,, fig. 18, defined
by the eguation

_ 40—1
A0

(27)

1Ly

which is the equation of an equilateral hyperbola having for asymptoles the
lines

p—1" and‘-4=—=100;

already derived from the general equation (25), and the branch of which si-
tuated in the positive quadrant intersecis the horizontal ¢ =1 at point S,
having an absissa ¢ = 1,0 )

This branch was drawn, in fig. 18, along the vertical asymptote and con-
tinued to point S, only, that part which would be located above 6 = 1 has
no technical meaning, bemuse, if 8 =1 it is a case of sudden closure, which
phenomena is dlscussed in § 9 to which the reader is referred.

The zone %, , therefore, is loeated between the vertical axis ¢ = 0, the hori-
zontal, 8 = 1 for a distance of 1.5, and the portion drawn of the h}rpeﬂmllc
hranch 31, a curve which is the locus representing the conduits for which
r =¢ =% ....=%m, and where the pressure of closing has the form ol the
{hagram fig. 12.

This zone ¥, , which embraces the conduits for which the maximum pres-
sure of the total rytme due to closure is the pressure of the dlrect blow %,
from a technical point of view is the most interesting zone of the synopsis,
first, because it covers the conduits of high and very high heads (which can be
seen by inspecting the diagram superimposed to the synopsis in fig. 18), and,
moreover, because il has very important properties for other Kkinds of gate
operations, which properties will be discussed later.

THE ZONE E; AND THE LOCUS 5,.

If, in equation (24) we put { = 2, there is ﬂbtamed as already mentioned
in the preceding paragraph:

20m, — L + fm; (28)

This is the equation of the curve s, which bounds the zone =, adjacent
to zone ¥,; this new zone £, embraces the conduits for which £* is the ma-
ximum pressure of the total rytme due to a closing operation, and for which
the pressure has the form of diagram Fig. 13; the curve s, is the locus of con-
duits for which £, = %, .... = {m and for which the pressure has the form of
diagram Fig. 14.
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E liminating in (28) %, and {m by means of the first of equations (9) and by
equation (19); also, putting

1
N, = 1= -ET
and multiplying by 26, we obtain
pB0—T) =2V (0 — 17 + (2 +1) 0" + Vp* + 47 (29)

This is the equation of s, in terms of pand 0, which is a quadratic in ¢
- and is, as yet, convenient enough for the determination of the curve s, .
This curve, in the positive quadrant of the synopsis, possesses a branch of
hyperbolic form, having as orthogonal asymptofes p=1 and 4 = 1.5, conlor-
ming to equation (25); it passes, moreover through the following points:

Bi= .2 3 4 5] 6 7 10 20
p= 404 1.99 1.59 1.43 1.33 1.27 1.18 1.08

which permitted to draw the curve in Fig. 18; this branch runs along the
vertical asymptote and stops=at point S, (8 =2, p= 4.04); it was not drawn
further, above 9 = 2 as we assumed a gate operation executed in a time 9 = 2,

The zone I, therefore is bounded by the curves s, and s,, the horizontal
# — 2, which gives it a form of a curved friangle with one apex at infinity.

THE ZONE X; AND THE LOCUS S3;.

Finally, let us put i = 3 in equation (24) and we oblain
2 PN, = Za + Tm 3 1:30]'

this is the equation of the curve s, which, according to the relation (23), has
the orthogonal asymptotes g= 1 and % = 25; this curve s, bounds, together
wilh s, and the orizontal 8 = 3, (fig. 18, the zone X, which embraces the con-
duits for which the maximum pressure of the total rythme in closure is °;
the curve s, is the locus of the conduits for which
Bl s =

Eliminating in equation (30) £, by means of the first and second equation
of the system (9) and Zm by equation (19, we obtain a very complicated expres-
sion in g and 0 which it is superfluous to quote here, and which can only be
solved by successive approximations; the reader may prove that the series of
the following points satisly this equation with suflicienl accuracy:

4 d 10
7.00 2.75 2.01 1.33

T o)
|
-

by which coordinates curve s, was drawn in fig. 18.
It is evident that the determination of the coordinates of the points located
on curves §,, s, efc.,, becomes more and more difficult and cumbersome,
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- LIMITING FORM EQUATION OF &,

The determinalion of the curves si by such a difficult procedure, however,
has neither theoretical value nor practical value because it does not tell any-
thing about the general properties of the curves si , and has no practical im-
portance, because, as already stated (see the circular diagrams of the interlo-
cked series), for i > 3, the value ¢ differs from &, by a_quantity which can
be considered negligible with respect to the errors which are made (even with
the greatest care) in the estimation of the constants which define the conduit.
A few numerical examples will convinee the reader of this fact,

" However, for the sole reason of not leaving incomplete the theoretical di-
scussion ol this question. [ will try to establish some laws of the curves s; for
the whole field of the synopsis.

[.et us observe, for this purpose, that il %y differs only very little from
Lm, equation (24)

2eni—1 = Li=1 + (24)
also differs very little from equation
phi-1 = Lm, (31)
therefore, we can consider this last equation as being I}né limiling form toward

which lends the general equation (24) of the loei s, when { increases,
Introducing, in equation (31)

=

T e
i 5= 1 — e dm = BNk S0 <R
i 1/ (:an) H 145

we oblain, after some easy transformation

]
VA e

(32)

which is the limiting form of the equalion of the loci s in lerms of 0 and p.

The curves represented by this equation diller very little from the curves
si in the region of their vertical branches which are asymptoles o g = 1; on
the other hand, they are alwayvs below these curves, in the region of the
horizonlal branches because the asvmplotes of the horizonlal branches ol the
curves & are given by 0 - 1 — (.5, while the asymptotes of the limiling curvess
(32), are given by 0 = (. Applying, for instance, equation (32) to the case
i = 2 and comparing curve s, with its limiting form, we obtain

0 = 2 25 3 4 5 6 7 10
o (from29) = 4.033 2488 1.991  1.595 1.426 1.333 1272 1.178
e (from32) = oo 2899 2122 1633 1443 1.342 1278 1.178

These ligures demonstrate that while i = 2 is less than the limit beginning
with which we propose to use equation (32), a close approximation is already
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reached for 6 = 5 and for @ = 10 the coincidence of the two sels of figures
extends to the 3d decimal.

As the limiting equation (32) gives the greater approximation the greater i,
its application for the drawing of curves s, ,s:...... si will appear justified,
provided however, that the horizontal branches are raised to make them asym-
ptotic to 8 = i — 0.5 and not to % = i. Fig. 18 was completed in this manner.

THE LOCUS S S50 = 18

It is clear that the conduils represenied by the point S;i , where the loci
si intersect the horizontals corresponding to ¢ = i enjoy the property that the
pressure of closure reaches the limiting value 4 for the total rythme) al the
instant of complete closure.

In fact, for a conduit located on s; , this limiting value of the pressure is
reached at the end of the i phase; and this instant coincides precisely with
that of the complete closure when the conduit is also located at ¢ = 7,

I state, moreover, that the points S, S_...S; are located on a curve which
is the locus of conduits for which the pressure reaches the limiting value &,
at the very instant (of intermediate rytme) of the complete closure.

‘The existence of such a locus can be derived, by reason of continuity,
from the examinalion of the laws of the pressure of closure, for a series of
conduils characterized by increasing values of :.

Let us consider, for example, the series of conduits the speed of operation
of which is defined by a value of 0, 3 <0 < 4, and by increasing values of ¢ ;
these conduits evidently are represented in the synopsis by the points of a ho-
rizontal line which, from left to right, successively cuts the three zones 2, 2, ¥_
in which are located the conduits for which the pressure of closure surpasses
the limiting value ¢." at an instant of the first, second and third phases.

Now, we must admit, by reason of continuily, that at the right of the zone
I, there must be located the conduits for which the pressure surpasses the li-
miting value al an instant of a fraction of the phase (incomplete 41h phase)
preceding the closure, as represented by fig. 16. ' :

But, we know, that on the same line, more to the right, i.e., beyond a
certain value of g, there exist conduits for which the pressure remains con-
stantly inferior to the limiting value, as represented by fig. 17; it is thereforc
evident that on this line a point must be located which represenis a conduit
for which the pressure reaches its limiting value at the very instant of com-
plete closure.

As, on the other hand, the locus of conduits satisfyving this condition must
evidently contain the points S, S, ... Si, it must have the form of the nearly
straight line indicated by dotting in fig. 18.

[ shall give here, in order to demonstrate the application of the method,
the analvtical determination of this locus, for the branch S, 8,,i.e. for
1 <9< 2 only.

Denoting by an index’ the intermediate values of 7 and { (i. e. these cor-
responding to non-integer values of 9) and making the condilions

'?-'i_ C - i =E, =
wy == Lui g — &

and
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the lwo first equalit;hﬁ of (9) will give

Lt =—=1= 2,0(1 — Hﬁ-)

6 At — 2 = EP%,

Eliminating ¢, and subsiituling (s, vith help of equation (19). we have

8V + 2+ DO — /¢ + 40* = 9p | 40° (33)

which is the equation of the sought locus. It is easy to demonstrate that this
locus passes trough the points S, and S, .

With 6 = 1, equation (33) will be satisfied by the sole value ¢ = 1.5, which
is the absissa of §, .

Putting ¢ = 2, equation (33) will be satisflied by the value (*) p = 4.038 which
is the absissa of S, .

The investigation of the segments S, S, , 5, 5, efe. (") results in more and
more complicated analytical expressions, which, however: do not add any-
thing new to the conclusions stated.

THE SYNOPSIS OF CLASSIFICATION OF CONDUITS FROM TIIE POINT
OF VIEW OF THE PRESSURES IN CLOSURE (fig. 18).

The set of the loci si and the locus S, S, ...Si furnish, so to speak, the
general skelcton of the synopsis of classificalion ol conduits from the point
of view of pressures in closure; this synopsis is represented by the graph fig.
18; its description can be recapitulated as followe:

1st. The line 0 = 1 bounds, in the upper portion of the synopsis, the zone
of sudden closure which I shall designate by ©,; it comprises those conduits
for which the pressure increases up to the instant of complete closure and
reaches the value 1 - 2¢.

9nd. The curves s,, 8,, S, . . - 8t bound the zones ¥ , &, 3 ... i, each
of which comprise the conduits for which the pressure surpasses the limiting
value tw® at an instant which belongs respectively to the first phase for X, lo
the second for X, to the third for ¥, to the ith for 2. The pressure ol the
total rythme which immediately follows this instant is then the maximum
pressure of the series of the pressurcs of the total rythme. :

(*) In reality, equation (33), for # = 2, becomes an equation of the 3rd degree which has 2
equal roots
1

S
& IJ

=i
-
=
=
&0
;

(115

the absissa ol point S,, and a third root

the absissa of point S;,, where curve s, culs the line O = 2. This point therefore is an isolated
point of equation (3%); the conduit which il represents, satisfies, in fact, the eondictions which
determine equaltion (33). :

(**) By which is shown that the equation for S, S, is satisfied by the isolated points §, ,,
and S, , ,, also that for S, S, is satisfied by points S, ,, and S;, ,, ete. See lig. 18,
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“ach of the curves s; is the locus of conduils for which the pressures of
the total rythme are equal to the limiting value 7' beginning 'with ihe ith.

drd. Belween the horizontal pointed portions of the zone 2., E, . . , ¥; are
included the zones which I have designated by 0,, &, . ., Ul -:.tﬂ-mprlm.}mg.j the
conduits for which the pressure, growing constantly during the closing oper-
ation, reaches and surpasses the limiting value " at an instant which forms
part of the last incomplete phase preceeding the closure.

4th, The zones ©,, ©, ... ®; are limiled by the line S, S, S,...Si which
line is the locus of conduits for which the pressure, growing constantly during
the closing operation, reaches the limiting value (' at the very instant of
complete closure; to the right of this line there is an unlimited angular zone
designated by © whuh comprises the conduils for which the pressure grows
constantly during the closing operation but never reaches the limiting value %"

As a synthesis of what prucudm, I can evidently slate as follows:

Disregarding zone ®, of the sudden closure, all zones of the synopsis of
classification can be grouped in two principal regions; to wit:

o) The region constituted by the ensemble of zones £, B, ... % this
region comprises the conduils for which the maximum pressure of total rythme,
due to a closing operation, occurs at one of intermediale instants of tolal
rythme of the operation; this maximum pressure is > &, for the conduits
located in the zone 2;; it is = (", for the conduits located upon the loci
si which separate the zones.

The absolute maximum pressure (always > 0.") occurs therefore at a well
determined instant ol the closing operation.

#) The region constituted by the aggregate of the zones ®, @ & .. .0;¢
this region comprises the conduils for which the maximum pressure of the
total rythme due to closure, occurs at the last instant of the total rythme which
preceeds the closing; this maximum pressure is always > §n°

The absolule maximum pressure therefore alwayvs occurs at the end of the
gate n]:uruiiun- it is < Gu" for the zone ® and > 4.' for the zones 0, & ... 6;,
while it is == %" for the conduits situated on thu line S, S, S,,... St which
separates the zone ® from the zones ®,, ®, ., . @, |

These resulls, it seems, fully |u*-.tlly the litle « Synopsis of Classification ol
conduits from the point nf view of pressures in closure » which I adopled for
this carlesian diagram of the curves si, because it classifies in a logical manner
all possible conduits with reference to the law of pressure variation during a
closing operation.

Let us yel investigate what is the relative importance of 1the several zones
of the synopsis from the point of view of the probabilily of actual occurance
of conduits which they represent. Let us observe first, that the line S, S, S,.
Si which limits the zone ® also bounds, with a certain approximation (and
disregarding a few exceptional cases) those conduits which are practically pos-
sible and those which are not, because the conduits located on this line must
either be exceptionally long or their gales be operated with exiraordinary speed.
Let us consider for instance, the 4 conduits represented by the points,

for which 0 = 1 2 3 4
and ; p =18 4 7 10
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If, for example, these conduils were operated in very short times, such as
© = 3,4, 5 seconds, they had to have the following lengths, which are easy lo
find with the help of the characteristic diagram.

Conduit S S, S, S,
iy, —=sal100 20 15 0 m.
(see diagram) D PE— 3.3 3 3 m/sec
(fig. 1) a= 8b0 750 705 650 m/soc
it ©=3 sec L =5 = 1275 565 350 245 m.
if +—4sec 1oh=— = 1700 750 465 320 m,
if =105 sec L = = 2125 940 5%5 405 m,

It can be stated that these lengths are in effect out of proportion with the
corresponding heads so that we can exctude as impractical, at least as con-
duits for water-power, all those situated in the zone ©, in other words all
conduits for which the maximum pressure in closure is < &w* The only con-
duits which remain for close investigation are therefore, as a rule, those which
are located in the zones ®; and %; , for which the limiting pressure &' is
always reached and overtopped during the closing operation of the gate.

But, as I bave slated already, excepting the conduits of zone % , and per-
haps of 2., this limiting pressure is surpassed by so little for all the rest of
| he lield of the synopsis that it can by justly considered as being the maximum
value of the pressure in closure. :

This last remark strongly accentuates the importance of the limiting value
Lm® for this category of problems and for almosl the whole of the field of the
synopsis; but il should not be lost ot view thal it is not applicable to a very
interesting category of conduits, that of high heads (p < 1).

§ 2. — The Symnopsis as a Cartesian diagram of the
Pressure {,,* and {,* of closure.

I have pointed out, at the and of § 5, the 'act that the method of synopsis
lends itsell extremely well lo Lhe construction of diagrams giving the nume-
rical values of magnitudes characterizing the phenomenon of the water hammer,
that is, the pressures; it is suflficient, for the purpose, to draw, in the synoptic
plan, the loci of conduits for whic these pressures attain predetermined rela-
live values; as a [irst application, I will construe the diagrams of the pressures
of closure.

DIAGRAMS OF THE LIMITING PRESSURES {m* (see fig. 19).

The observatinns at the and of the preeceling paragraph called attention
to the overwhelining tmportance which must be attributed to the limiting
pressure Im” in almost the whole of the synoptic plan. It, therefore, seems
opportanate to try to establish, in the first instance, the diagram of %.* espe-
cially as the character of this diagram is extremely simple.

In fact, the plat of the loci of conduits, for which the limiting (relative)

ks

pressure Sm® attains determined values, in nothing else but a set of straight
lines passing through the origin, :
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From equation (19) which gives the limiting value of &

(19)

3

0
2Inu —_ t_m — —
C 5 O

it follows, thal Lhe plat of the loci of the conduils for which &' reaches given
values is delined by

B res e el e ey (e
0 —_— i‘ru EII] 1 {ti4]

which equation justifies the preceeding statement
By meens of this equalion (34) it is easy to obtain the folloving system ol
values, for a series of values o’ 4" increasing from unity:

Em == 1,0, =0 P =20 £ =0,707 G =40 £ = 1,500
11 0,095 9.9 0,809 1.5 1,650
1,2 0,183 9,4 0,901 5,0 1,788
1,3 0,263 9,6 0,992 6,0 2,041
1.4 0,338 2.8 1,076 7,0 9,968
1,5 0,408 3,0 1,155 8,0 9,475
1,6 0,474 3,2 1,230 9,0 9,667
1,7 0,537 3,4 1,302 10,0 9 816
18 0,596 3.6 1,370 2,0 3,175
K 0,633 3,8 1,436 15,0 3,615

ete, cle.

by means of which values the rays ol straight lines passing through the origin
have been platted the plat giving the diagram of the limiling pressures &'
(Fig, 19).

[n the same diagram are also platted the curves si which bound the zones
2i and ® so that on the diagram there can be found, al the same lime, the
limiting pressnre Cw' (which can be considered as the maximum pressure for
the whole ol the field of the synopsis, excepting the regions ©, % and part of
dy) and also the instant of the operation at which this pressure occurs.

For example, for the conduits represented by the points.

Ist p =2,0=4, the conduil is situated in X, and the pressure will reach
the relative value 1.65 at about the middle of the 3rd phase, or at 5/8 of the
operation.

nd p=3,0=75, the pressure will have lhe relalive value 1.5 near the
middle of the 6th phase, or at 11/15 of the operalion; ete, !

This diagram makes it possible to immediatoly recognise, whether or not
an incomplele operation can raise the pressure to the limit which it would
reach if the operation be continued,

In the fig. (19, the straight lines represenfing &w® = const., were shown
dotted in the zones 0, ¥ and in a portion of 2,1, e, at the zones where
the maxima of the pressure in closure differ sensibly from &'

DIAGRAM OF THE PRESSURES %2 (see Fig. 20).

Disregarding completely the zone ® which, as already mentioned in the
preceeding paragraph does nol present any features ol technical interest, le
us investigate the zones ® and 3, in which the maximum pressure of total
rythme in closure is always Lhe pressure £° (pressure of sudden closure for
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the zone ©,, and direct blow for the zone Z,; determined by the first equation
of the system (9). :

Zone 6,. If 8<1 as explained at length in § 9, the pressure, at the instant
of complete closure reaches the value

=1+ 2. (18)

which equation is obtained by putting » = 0 in the first equation of the system
(9); it retains that value (which we have called the pressure of sudden closure)
up to the end of the first phase.

Because the value of {*, as given by equation (18) is indipendent of 8, the
loci of the conduits for which the pressure of sudden closure reaches deter-
mined values will be represented by the series of verlical segments between
9 =0 and 9 =1, and characterized by the absissae.

1
prmglie=l);

These loci were platted in Fig. 20 and it is believed that the plat does
not need further explanation.

It will be noted that for p= 1.5, we have {," =4; the loci {,’ = 4 and (" =4
meet at point S, the intersecfion of s, and ¢ = 1.

Zone &,

This zone comprises those conduits for which the magimum pressure ol

the total ryvime in closure is the pressure of dire:t blow {,* determined by the
first equation of the system (9).

g —1=2(1—n%). 15t of (9)
in which is put

.ril:I______

i

By means of this substitution, the general equation of the loci of these

contuits, for which Z* renders given values, becomes, as can be easily proven

o S ] :
ASE SN T s e

(35)

If a series of constant values is attributed to % this equation represents
a series of equilateral hyperbolae passing through the origin and having re-
spectively the asymptotes
s o g,
i et

]
L

Those branches of these hyperbolas which lie in the synoptic quadrant
must naturally meel the homologuous straight lines of the series m == const.,,
in points of the locus s, (see Fig. 20) because this locus exaclly corresponds
to the conditions %, = U,

This locus s, therefore can also be defined as being the locus of the points
of interseclions, of the homologous elements of the series (34) and (35).

Fig. (20) therefore constitutes a diagram of the pressures ol the direct blow
¢,*, which permits us to determine by inspection, for the conduits situated to

¥
B e T

=

R R R =
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the left of s, (zone E,) how and by what amount £®is > {w® and, conversely,
for the conduits to the right of s,, how and by what amount £ is < {n"

By an analogous process it is possible to construct the loci of the conduits
for which the first pressure of the counter blow ¢,* has a predetermined value, (*)
which i, the maximum of the pressures of the total rythme in closure for the
conduits situated in Z,.

That part of the locus £, = const,, located in the zone I, is thus a curve
convex downward which passes through the two points where {m* = const, s,
and s,. The plat obtained by this laborius method, however, has no real in-
terest partly because the curves deviate very little from the straight lines {* =
const., in the lower portion of I, and partly because the intermediate maxima,
which will be treated in the next paragraph, have a much larger importance
thant the pressures of total rythme in the upper part of 2, and in 0, i. e.
(fig. 18) in the region located to the right of s, and below 8§ = 1, up to about 9 = 4.

The same remark applies to the loci g, = const., {,* = const., etc., the plat
of which is even more difficult, but which can be considered, for all practical
purposes, as merging with the straight lines &.* — const.,, for the regions lo-
cated in the respective zones X, X, etc,

§ 13. — The Synopsis of classification of the conduits from the point of
view the maximum pressure of the intermediate rythme in closure.

It was clearly pointed oul in section 11, that for the conduits located in
the limiting zone ® and within the horizontal zones ©,®_ @, etc., situated
between the pointed portions of the zones ¥; , the maximum pressure oceurs
at the instant of complete closure, both for the total or intermediate rythme,

[ now propose to demons!irate that, to the contrary, for the conduits lo-
cated in the field of the zones X; , there are produced, in closing, maxima of
the intermediate rythme ¢* %.°.... &% which are greater than the maxima of the
total rythme on the basis of which latter we have eslablished the subdivi-
sions of the regions of the synoptic field occupied by the ensemble of these
zones Zi; we will now establish the lews of these intermediate maxima.

Although this study should evidently be the sequence of those made in
preceeding paragraphs, neverthelese an equal or even greater importance must
be attributed to it, as this study has the resuit of completely exhausting the
problems of the maximum pressures in closure.

The reader will find without difficulty that this study, in general, reduces
to that of the interlocked series of the values

& | 6"
and E—-—-—*F ’

=

I.‘."*FJ

and that it can be developed without the help of those demonstrated in § 10
and § 11; at the sime time, il can give place to synoplic representatlion, which,
from a technical point of view, bring the problem to a closer solution than
the synopsis ol classification (Fig. 18).

(*) The method to be used consists in eliminaling Z,, between the first and second equation

of (9), and in putting I, =consl.; but the resulting equation in 3 and ® can only be solvet by
trial.




48 LORENZO ALLIEVI

[ have, nevertheless, preferred to start with the exposition of results which
follow a partial study of the problem, based on the investigation of finite diffe-
rences which exist between the terms £ ,%,.%, .....% of the interlocked series ol
the total rythme, and this for two reasons.

First, the periodic discontinuties which occur in the variation of the pres-
sure have made it easy to grasp its general laws; it was sufficient to concen-
trate out attention upon the laws according to which vary the salient points
of the broken line representing the pressure in closure; the fact that the in-
terlocked series €, ,%,....% tend rapidly toward a limiting value ., moreover,
give a great pratical value to the results of this investigation and to the the-
refore derived synoptic representation.

Second, this propriety permitted us 1o plat what could be called the ske-
leton of the diagram of the pressure for the entire duration of the operation,
while the study of the differential quotients is necessarily limited, due to the
very fact of periodic discontinuity, to the duration of each phase of the phe-
nomenon, so that no conclusions can be derived from same which would hold
beyond the phase considered. II gives us, substantially, lhe laws according to
which the curvature ol the pressure line varies belween two instanis ol the
total rythme and indicates the eventual presence of mmaxima, the numerical value

ol which, however, musl be calculated by means of the fundamenial equa-
tions.

. — GENERAL FORMULAE.

For convenience, let us denote by an index’, the symbols relative to the
values ol the intermediale rythme; differentiating with respect to ¢ the funda-
mental equations and considering the conditions:

: { o1 i I

A= — —: Al e e

6l fl

we obtain (see also equations (12) of § 4):

it 3 0 o {:" ’
{’I—I_F"qu‘-’a; ",:Tt-l
: e DO 2 Bl i A b
i,—p-,,}'ﬁ, + (¢, H"]"f_ r—{?;u—-,__”i (36)
; .y 9%, 34 ¢
ﬂ--*%’unlaf’ + (E, + L) “" E{E,u—t )
E[ﬂ. [’-'tﬂ.

which system of equations, ltogether with the equation (9), connect the series
of interlocked values:

o

with regard to the instants which difler between them by the interval v of a
phase. :

s s -
sl

i '-i

o
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From equations (36) follow :

o 1 =
af = 0 trr + F'TI-: &
A i 1 [ 2 ; | 7
= |, —— 36 bis
ot Ly tond 5 ﬁ'1+m,§ 1 ( }

f
— 7 — .E.. . 1— = I:ﬁ' o ___r__g_ E (zr! _{rz =, F'-Jrg E:r ;)]
B B 2 e i i A T R e
ete. \ Etﬂ.

which equations permit of the discovery of the existence of intermediate
maxima of the pressure in the several phases, except, however, in the first
phase, (the phase of the direct blow) in which the pressure is continuously
increasing as demonstrated by the first equation of the system (36 bis).

We will make a complete study only for the second phase and will append
some information concerning the 3rd and 4th phases, altough it should be
noted that, beginning with the 3rd phase, the problem does not present any
practically interesting features. We know, in fact, that in this phase the pres-
sure in closure approaches so close the limiting pressure £, that all investi-

gation regarding the exact value of the actual pressure becomes of purely
academic interest.

II. — INTERMEDIATE MAXIMUM JN THE 2nd PHASE.

The conditions for the existence of an intermediate maximum of:&, are:

s 3*C, : _
Y e < 0; (37)
remembering that the second of these conditions means that the line of pres-
sure must be convex upward (because, in the contrary case we would have a
minimum instead of a maximum).

We shall nov demonstrate that this condition is always satisfied when
- the first condition holds, in other words; there may be a maximum in the
second phase, but never a minimum.

Differentiating, for this purpose, the first equation of the system (36) and
also the equation obtained in adding each member of the first and second
equation of the same system we obtain:

¥, . ¥, 2 B
e Lo :I= 1 Sr s S el
(11 1= F"ql} 31 &f (ﬁ t) (38]
3'2:1)* 3% e S e )
A | bl Tt S Lot an)—m =— - — =2
2(,_1;fr F.HE'IEE*}*(HE“T'.J:;) e af(ﬂ o

The first equation of the system (36) permits us to conclude without dif-
ficalty, that the se:onl member of the first equation of the system (38) is

ot B

- T, . =
always positive, and that, consequently S IS also constantly positive, so that

the pressure curve, during the first phase (the phase of direct blow) is always
concave upward. Now, becaise the first and second terms of the first member
ol the second cquation of the system (38) are necessarily posilive quantities,

L. ALLIEVL, — WATER-HAMMER. 4
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and because the second member or that equation vanishes for the point cor-
responding to the maximum value of the curve, it follows that

B3,

S
which had to be demonstrated.

The condition that a maximum should occur during the second phase is

therefore always obtained in putting the second equation of (36 bis) equal to
zero, which gives

AT TR
N e,
This equation is that of the plat of loci of the conduits which possess the
indicated properties.

If we wish, in fact, that the maximum should occur at an instant { =m
of the second phase (m being a value between 1 and 2), we must put:

£ (39)

m e m— 1

fy 2 q 1 y fj k) (4{})

and, by means of the first and second equation of (9), eliminate ¢, and &,
from equalion (39); we will obtain a curve oym of the synopsis in terme of
¢ and 6, an this curve will be the locus of the conduits for which a maximum
pressure in closure will occur at an instant { = m of the second phase.

If we attribute to m a series of values included between 1 and 2, equation
(39) will give the plat of the loci in question. These loci have a common
vertical asymptote, p =1, but have no horizontal asymptote which distinguishes
them from the loci si .
Putting, in fact, 6 = o0 : Lim v, = 1; Lim¢,=Lim¢{,=1
equation (39) will give

i A
==

on the other hand, if we transform (39) and vrite:

% (G ) =2 (2,
P \P P

and remembering, as already remarked in Section 11, that for p =, Lim
(Li:p) = o0, it will be clearly seen that the two members vanish independently.

The plat of the loci considered is evidently contained between the limiting
loci obtained in putting m=1 and m=2 in equation (39): these limiting loci
are those of conduits for which the maximum pressure in closure oceurs
respectively at the beginning and at the end of the second phase,

Limiting locus s ., (Fig. 21 and 22).

Applying equation (39) for the case m= 1, and putting, for this purpose:

1 soifze=1.:

"'1'1:7]&:1; tlf1:‘.tl:I:-]:": Er|1=t;1;

we obtain:




WATER-HAMMER ol

Eliminating ¢, by means of the first equation of (9), where :

il
= 1= B-?
is substituted, and reducing, we get:
dplp+1)

R : = ;
3—¢@pt+ 1)
which is the equation of the locus sought.
This locus passes through the points

=045 H050FRE0E 0 R08 09 v AL
6 =100 120 174 261 431 935 oo

and is platted in Fig. 21 and 22,

This locus therefore is situated to the left of the asymptote ¢ = 1, in the
zone I, . It is limited, on the other hand, on account of the physical phen-
omenon which it represents, by the line 0 = 1, as the closing operation which
induces this phenomenon must last at least lo the beginning of the second
phase (¢ = 1).

Limiting locus o,.,

Applying equation (39) for m =2, and putting

. 1
Ti::‘qlzl_F; E:ll":z}]; fzﬁJ

which is the same as dropping the indices and considering the symboles as
relating to the instants of the total rythme with indices 1 and 2 respectively.
The limiting locus will become
25
tx e T TR L
L +
in which equation &, and §, must be replaced by their values given in the first
and second equations of (9), where there has been put
1 2

s T TRy 'naz]-_—_—';

0 i

(42)

This method results in very complicated analytical expressions, and it is
preferable to proceed by successive approximations and to determine the pairs
of values ¢, and {, which satisfy equation (42).

The sought locus will pas through the points

p=2 2.5 3 4 5 7 @
0 = 2.07 1.83 1.67 1.46 1.36 1.26 1.00
This locus therefore will pass to the right of the asymptote g=1, in the
zone X,; it is limited, in view of the physical phenomenon represented, by the
line 8 =2, as the gate operation resulting in the phenomenon must last at least
fo the end of the second phase (¢ = 2).
Limiting locus s,.

- Because the limiting locus »,., stops at 6 =1 and the locus s,., at 0 =2,
we can say that a certain locus 52 m (Where m is contained between 1 and 2)
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must stop at 6—=m, at a pnint which represents a conduit for which the al-
gebraic maximum of the pressure occurs at the very instant of complete closure.
The locus of these extreme points, which we will designate by 6,9 is na-

turally determined by the same general equation (39).
2}

¢, +en,’

and by the supplementary condition m =6, where 6 is contained between 1

and 2, which, by means of equation (40) gives

¢, = (39)

_ﬂ,:‘:f}; _q.tl:‘ﬁ_.

On this assumption, the first and second equations of the system (9) furnish

¢, =Vaen, 0, — 2+ 1, _ (43)

from which the sought locus can be derived by equations (39) and (43) and
eliminating ¢,, by means of the first equation of (9). This locus must neces-
sarily pass through the extreme points of s,., (for 9= 1) and of s,., (for 0 =2).

It is, however, more simple to determine, from equations (39) and (40), by
successive approximations a series of points of the locus s5,.4 for a series of
values of 6, comprised between 1 and .

=11 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0
e=045 054 065 0.78 091 106 123 142 163 184 207

which made it possible to plot the locus s, in Fig. 21.

The points of the preceding table, considered respectively as the extreme
points of o,,..,; Gpeai Oapyes- IAKE it possible to draw with reasonable ac-
curacy the plof of these loci, the general character of which is indicated by
similarity with that of the limiting leci s,.,, and s,., and by the common asym-
tote, p =1 (Fig. 21).

The plat of the ¢,.m drawn in Fig. 21 therefore constitutes a diagram of
classification from the point of view of the maximum pressure in closure, of
the conduits situated in the zone which we will designate by 2,., (because it
is at boundry of the zones £, and Z,) limited by the loci 5,4 , 5,., and o,.,.

These conduits are characteristized by the fact that the algebraic maximum
of the pressure in closure oceurs in the second phase; we talk here of alge-
braic maximum, as the numerical maximum also occurs during the second
phase, exactly at the instant of the complete closure, for all conduits situated
between 0 =1 and ¢=2 and to the right of ¢, .4 .

In order to demonstrate better the conclusions derived from this study,
we have represented graphically (See Fig. 21 bis and 21ter) the laws of the,
pressure in closure for o different conduits A,,B,,C,,D,,E,, located at 6=1.5
and for four conduits A.,B,,C,,D,, located at 9 =2.5; these diagrams are, we
- believe sell explanatory.

Finally in order to gain a posilive idea of the numerical value of the in-
termediate maxima in relation to the value of the pressures of the total rythme,
I calculated these maxima for four conduits located on s, for which the pres-
sures of the total rythme are equal to Tw’, and which have a law of pressure
variation in closure, the form of which is illustrated by the diagram Fig. 12,
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Altough the curve s,, does not belong to the plat of the s, it is very
little different from s,,,.,, so thalt for the conduits located on s, and in the
zone Y .. the maximum pressure cccurs at the instant which corresponds to
the 6/10 of the second phase, while for the conduils located on the upper por-
tion of s,, belween 5., and 0= 1, the maximum pressure occurs at the in-
stant of closure.

We obtain
Conduits defined by the Pressure of Lhe Maximum
Co-ordinates of the Points of s, total rythme Pressure
5 = 1.25 o = 1.333 (m® = 278 4= 313
= 1.50 = 1.25 =225 = 2.65
= 2.00 = 1.167 —4 ks = 1.80
= 3.00 —=140 = 1.44 = 1.47

from which values it may be seen that, already for § =3, the maximum of
the intermediate rythme differs only very little Irom the pressure of the total
rythme; theen researches therefore become interesting for the conduits charac-
terized by the small values of 6 (rapid closure).

III. — INTERMEDIATE MAXIMA IN THE 8RD PHASE,

The conditions of the inlermediate maxima in the third phase are:

5 }:'“ 6" Cun
= 0 e me Ty = (: U, (4‘-':‘)

&1 8t

but these two conditions are not inlerconnected as were the conditions (37) of
the preceeding case, for which it was stated that the second is always satisfied
when the first one stands. The first of the conditions (44) can, in fact, corre-
spond to a minimum which may occur at certain regions of the synoptical
field; to visualize this it is sufficient to inspect diagram 12; it is easy to see
that such a region must exist around the lucus s,; Fig. 14 on the contrary,
will show us that the region in which the first of the conditions (44) corre-
sponds to a maximum, must occur around s,.

The preceeding can be demonstrated analytically by means of conveniently
developing the system of the relations (38); such demonstration is, however,
of a questionable utility; it is sufficient, for our purposes, that we have esta-
blished that the zone in which the first of the conditions (44) corresponds to
a maximum, and the limits of which we now will try to find, extends
around s,. ;

If the condition of maximum stated previously is introduced in the 3rd
equation of the system (36) we find.

2 & —p 7,
tf:r_'—'_:_(zsn"‘%cg): 45
3 £u+;‘:"’lu ti_FTll J )

which, with the three first equations of the system (9) in which is to be put

m—1 f m— 2
ﬁ ,.'.1 ?11:'1_- ﬂ ¥

(46)

""l.-i:"l'__' ‘qrazl—

will determine the plat of the loci s;m of the conduits for which the pressure
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of closure presents a maximum at the instant { =m of the third phase (m being
a value betwen 2 and 3).
Limiting locus o,,,.

Let m = 2, and consequently

Tfa':l'__-_" 71'3"___1_"_" “;1':-']n=1:

tuir == hpt) t':r P z:: ; tr1 — tﬂ =1,

equation (45) will give, for the limiling curve s,.,, the locus of conduits fo
which the algebraic maximum of the pressure occurs al the beginning of the

3rd phase.
= S F"])
2 [t 1) s 47
et sy (t’ Lnip i

eliminating from this %, and %, by means of equations 1 and 2 of the system (9)
the following pairs of points can be derived through which pass lhe locus
sought.

0= 2 i 4 D / *
o= 180 47T e et O 1100
by means of which this locus was platied in Figures 21 and 22,
Due to the character of the phenomenon represented, this locus must
naturally be limited by 0 = 2 (because 0 <= 2).
Limiling locus o,
Putting m = 8, and also

: er
We=1—g; A, =1—

- 1
711:1__“0--

=| s

and dropping the indices in equation (45), we will obtain the eqquation ol the
locus .., of the conduits for which the algebraic maximum of the pressure
oceurs at the and of the third phase. This locus, naturally limited by the line
b = 3 passes through the points

=3 ! ) 7 LS SRS n
= 3.22 2.24 1.87 1.00 1.25 1.00

through which it was platted in Figs. 21 and 22.
Limiting locus a,.q.

Putting, finally, m =0 (where 2 < 0 < 3) and

i ‘ 1

We=103 Wi=7i M=%
the relation (45) will furnish the equation of the locus of the extreme points
of the curves 6,.m, which locus represents the conduits for which the algebraic
maximum of the pressure occurs at the very instant of closure.

The loci s,.q, 5,., and s,., define the zone 2., (which extends at the same time
over 3, and ¥,), comprising the conduits for which the maximum pressure in
closure oceurs during the 3rd phase; we can draw, in this zone, by means of
the known points of .., the loci 6;.m (dotted in Fig. 21) for which the maximum
pressures occur at a given instant of the third phase.
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For the conduits located to the right of 5., and belween 0 —= 2 and 0 = 3,
the absolute numerical maximum pressure occurs exactly at the instant of
closure,

IV. — INTERMEDIATE MAXIMUM IN THE 4TH PHASE

The conditions of the intermadiate maxmum in the 4th phase will be
B....Eii =) 3% 8y
- \aaee 3 (*
to which the same observations can be applied as made with respect to the
conditions (45); these condition will permit to determine, point by point, by
means of equation 4 of the system (36 bis) the limiting loci s,.,, ,.,, 6.6, Which
bound the zone X, comprising the conduits for which the maximum pressure

in closure occurs during the 4th phase,
The locus s,.,, bounded evidently by the straight line = 3 passes through

the points

<o,

=3 4 5] 7 @
i) 2.10 1.80 1.45 1.10

and the locus ..., bounded by the line 0= 4 passes through the points:
=4 5] 7 10 e

p = 4.40 2,72 1.95 1.50 1,00

while the locuse.p, with a small concavity upward, connects the exireme
poinis of the lwo preceeding loci, as shown in Fig. 22.

By the same procedure we could determine the zones X,.,, 2,.,, ele. relat-
ing to the fifth, sixth, etc. phases,

Fig. 22 therelore represents the synopsis of classifications from the point
of view of a maximum pressure of intermediate rythme in closure.

The zones 2., , £,.,, Z,.,, have the form of a curved triangle, one of the
apexes of which is in infinity on the line p = 1, and which partly overlap (*);
they comprise the conduits for which the maximum pressure of the interme-
diate rythme in closure, occur respectively in the second, third, fourth, etc.,
phases. Their median lines are the loci s,,s,,s, .5 and they are limitied, in
their upper parts, by arcs of finite lengths g,.g,6,.9... Conduits located to the
right of these arcs reach the numerical absolute maximum pressure at the
instant of closure. This synoptical representation, as can be seen, differs from
the conception of the limiting pressure {'y, upon which was based the synopsis
of classification of conduits, from the point of view of the pressures of the
total rythme, and represented by Fig. 18.

However, these two synopses are mutually complementary; they are con-
nected by the fact that the curves s, s,...si, which in the one case bound the
zones i, in the other case are the median lines of the zones Z,,,%,.,, ete. It
is a remarkable result that the condition of maximum applied in one instance
to a finite series of the values of the pressure corresponding to successive
phases, and in the other instance to the infinite series of the values of the
pressure within each phase, conducts, in both cases, to diagrams defined by
loci which all have te line p=1 as their common assymptote. :

(*} This particular overlap signified that the conduits represented by points common to two
zones have two maxima close to each other, in the phases of the order i and i+ 1.
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§ 14. — The Synopsis

General Diagram of the pressure maximums in closure.

The results of the preceeding Section enable us to proceed to the construe-
tion of a general diagram representing the pressure in closure.

ZONE E,.

Let us so designate that part of zone Z,, comprised between the axis 6 and
s,., which separates it from the zone where the maxima of the intermediate
rythme occur in the second phase (Fig. 22).

In this zone 3 ,,, the maximum pressure is always that of the direct blow,
(2, the diagram Fig. (20): discussed in Section 12, is therefore valid in this zone

The locus of the conduits for which the maximum pressure °, reaches a
given value is therefore the hyperbole represenled by equation (35'; the plat
of these hyperboles gives the diagram Fig. 23, of the maximum pressures for
the regions located in the zone considered.

This zone contains exclusively conduils of very bigh heads (see also the
diagram of the characteristic gj; il has a very greal practical importance, espe-
cially in the upper portion, because, in the case of necessarily very long con-
duits, and of considerable duration of phase, it is geneially dilficult to have
very large values of 6 (relatively slow closurcs).

ZONE Z(.2, ey etc.

" In the zone .., there are shown the loci s, of the conduits, for which
the maximum pressure of the intermediate rvthme at the instant f =m of the
second phase. We can, therefore, determine, for a series of points (or conduits)
of each of these loci, the numerical value of the maximum pressure occurring,
and, by interpolation, we can plot the loci of the conduits lor which the ma-
ximum pressure reaches a given value. : :

We can proceed in the same manner for the loci 7,. of the zone £,.,; but
this has no particular interest except for the upper portion of this zone, be-
cause, as already demonstrated, these intermediate maximums differ only very
little from the limiting pressure {m*® when 0 is greater than 3 or 4.

The loci &n® = const. were so determined and plotted in Fig. (23). These
loci constitute a partial diagram of the maximum pressures in closure, appli-
cable to high and very high heads.

THE REGION TO THE RIGHT OF THE CURVES Fi. -
We have previously observed that, in the zones

1 <0< 2 to the right of 2.9
< b= » 5.0
i—1 <0< i > 5i.g

the maximum pressure is always the pressure %ig which occurs at the in-
stant of complete closure; by means of systematically performed computa-
tions and convenient interpolations, it is easy, therefore, to construct within
each of these zones, the loci of conduits for which the maximum pressure
reaches a given value.



WATER-HAMMER : 57

These loci, along the line 6§ = 1, meet the vertical segmenis corresponding,
- to the diagram of sudden closure, and join, on S, S, 8§, .... Si (see the synopsis. Fig.
(18) the radial lines issuing from the origin, which represent the plat of the
limiting pressures 0"

In § 11 we have, in fact, remarked that, for the conduits located on
S, 8, 8,....5;, the pressure in closure is consiantly incrcasing and reaches the

value {x* at the instant of complete closure.
Finally, it may be of interest to note that for the segments of the loci in

question, which are siluated in the region 1< 6 < 2, it is possible to find a
gseneral expression of the equation in terms of ¢ and 0, which makes the plat-

ling much easier.
Applying, for this purpose, the first and second equation of (9) to the in-
stants of the intermediale rythme and putting the conditions

[

r l
Ne =05 W =gns e =100,

we have

from which

4;«%——2F+1:§’,.{;.

Assigning a series of numerical values > 2 to the pressure {,°. of the in-
stant of closure, and eliminating ¥, by means of the first of the two preceding
equations, we oblain, alter some reductions:

:L’.p Vde+ 1)—2(C,0— 1)

20+ o—1 : V<)

6

by the help of which we can plat the loci in question for any desired value
of &, g in the zone 1 < 6 < 2, located to the right of ¢, g.

It is easily verified, that, for =1, equation (48) results in {S'g=14 2p =
the pressure of sudden closure; on the other hand, if we compute the value
of p for 0 = 1,5, and § =2, and for a given series of integer value of ', we

obtain

¢ o=3 1 5 6 7

=1 o =1 15 5.8
=15 —1 53 Wa1g PG a0AE g0 gy
= 2 =215 28 349 410 470

which figures demonstrate that these loci are lines of slight curvature only;
the abscissa of the middle point, on the line 0 = 1.5, differs, in fact, only by
about 0,04 from the abscissa of the middle point of a straight line connecting
the extreme points situated on 6§ =1 and 6§ = 2.

In the same manner, but only by means of easily performed successive
approximations, can be determined the loci {*.g = const., which constitute the
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prolongation of the former in the zome 2 < 6 < 3, located to the right of ¢,
and in a general way, the loci 1*; g = const., in zone i —1 <0 < i, to the right
of 5:p; it is, however, superfluous, from a practical point of view, to pursue
this research beyond 6 =3 or 4.

GENERAL DIAGRAM.

Finally, if we combine in a single synoptical diagram, the partial diagrams
of the different zones the study of which we just finished, i.e
A) for the zone 0 < 6 < 1, the diagram of the pressures of sudden closure of
Fig. 20
B) for the zone 1 < 0 < 2, to the right of s,.5;
for the zone 2 < 0 < 3, to the right of o,.5;

for the zone i < 0 < i+ 1, to the right of sit1.9, the diagrams, just de-
scribed, of the loci K .0 = const. ;

C) in the zone %, , the dlagram of the pressures of the direct blow, the
hyperbo]a segmentis of Fig. z0;

D) in the zones %,.,,Z,. n....Ll__l,. the dlagram of Fig. 23 conveniently ex-
tended to the upper parts of the zones, (however, for values i and 6 less than
3 or 4), and, for the balance of these zones, the diagram of the limiting pres-
sures {m® of Fig. 19, the corresponding loci being connected by smooth curves,
we obtain the general diagram of ithe maximum pressures in closure (I'ig. 24)
which is a condensed resume of the resulis of all the researches described in
this Note.

The partial diagram (Fig. 23) which gives the larger scale detail of the
region comprising the conduits of high heads, constitutes a complement of the

general diagram, the value of which will be appreciated in application to ac- .

tual cases. In the general diagram (Fig. 24) are also platted the locis, s, ... 8i ,
which serve to determine the instant of the gate operation, when the pressure
reaches its maximum; this element of the problem, in many cases, has a great
pratical value.

In order to illustrate the use of the diagram by a numerical example, we
will assume a conduit characterized by ¢ = 4.5,0 = 20, From fig. 24 it can be
seen that this conduit falls on s_, and therefore the maximum pressure, %* = 1,25,
is reached after 16 rythmes, in other words at 4/5 of the closing operation;
such a conduit may correspond to the following data:

yu=2{}; B — 255 a— 700k; L = 140; TiE= O SeCL;

In this case, the maximum pressure would be reached at the instant
{ — 6,4 sec; if the closing operation of the gate would be incomplete and should
stop at a time < 6.4, sec. the maximum pressure indicated by the diagram could
not be reached.

-
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NOTE III.
THE WATERHAMMER OF OPENING

Introductory observations.

In the relation

which defines a closing operation executed according to a linear law, the symbol
0 designates the time necessary to cowplete the closure of the orifice of outflow;
this same symbol will denote, per contra, the time necessary to double the
initial area of the orifice, when we deal with an opening operation also exe-
cuted in accordance with a linear law defined by

However, these definitions have a precise meaning only if the closing or
opening operations which they define are started from a state of regime corre-
sponding to a given part of the area of the orifice, to which part I attributed
the value of unity (n, = 1).

Shéuld the opening operation start at zero orifice area, the preceding defi-
nitions of the notations ¢ and 9 would be faulty.

As a matter of fact, for all conduits, the value ofpis equal zero at a
regimen characterized by v, =0; and because 4, =0;i. e., =, we have, in
all cases, 6 — 0, which is meaningless. For this case the fundamental formulas
must be conveniently modified.

Therefore, I shall discuss separately the two cases:

(A) Opening operations of conduits in service, i e., of conduits for which
¢, and v, are greater than zero; this study evidently presents a close correlation
in all its details with that made in the preceding Note on the waterhammer
in closure.

(B.) Opening operations for the placing in service of conduits in which
the water is at rest, i. e., of conduits, the initial condition of which is defined
by 4, =0 and v, = 0; as just mentioned, this study necessitates a transformation
of the fundamental equations and presents remarkable singularities.

The subject of this Note, therefore, is divided into two parts, the first of
which, in view of its close relationship with Note II, is discussed in the same
order and in the same manner.
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PART 17
OPENING OPERATIONS IN REGIMEN.

§. 15. — Circular Diagrams of the Interlocked Series.
(Fig. 25 to 30)

Applying the graphic method of Fig. 3 (see § 6) to lhe determination of the
5 of the total rhytm in opening, it can be easily seen, by considerations ana-
logous to those of § 8, and from the fact that the series g, p7,, ¢7,... is linearly
increasing, that the resulting graphs have the following properties (Fig. 25 to 29).

1. — The centers C.* C.* C.,*.., of the consecutive circles v.* v.* v.*... are
situated on a straight line at 45° and passing below the origin 0.
2. — The cireles y,*, v.%, v.*... all intersect at the same point M* of the bis-

sectrix of the axes; the two coordinates of this poinl, equal {m, represent the
limiting value of the interlocked series & for an opening operation.

With the help of these properties, it is possible to study graphically the
laws of the pressure in opening as lollows:

Considering a circular diagram of the type of Fig. 25, it is easy to conclude
that, if ¢ is relatively large compared to ¥ (and in all cases when ¢ > 1), all terms
of the intelocked series of total rythme are larger than their limiting value
{m, and we have

1>L>585>8> 0000 > Wmj

this results from the fact that the center C,* falls to the right of the vertical
which is midway between the segments Z, and 4m. 1 he diagram of the pressure
which tends assymptotically toward the limil {u. therefore, has a form similar
to Fig. 25Ys, On the other hand, if the center C,* falls exactly on the vertical
midway between %, and %, that is, if

1
g =§(] == tm)-,.

as shown on fig. 26 (where 8 =2 and ¢ = 0.90) we, ol course, have

T S t
kI':I ——7 \'!, S LI I s 110 4

which result is identical with the one obtained in §8 for a closing operation
the graph of the pressure therefore has the form of Fig. 26,

If p, with reference to ), has a value, such that C,* falls to the lelt of the
vertical midway between ¢, and {u, and that the center C,* lies above M¥ as
shown in the case illustrated in Fig. 27, all terms of the interlocked series of
total rythme are < &§m, which can easily be ascertained. In this case the graph
of the pressure must necessarily have the form of Fig. 27, i. e., during each
phase, the pressure curve must twice intersect thc horizontal of coordinate
tm". In fact, as this curve cutls the horizontal in question in B,, it also must
cut it in B,, B,, BZ..,, etc., at intervals of one phase; bul, because the pressures
of the total rythme are always < Iw’, the curve also must intersect the hori-
zontal coordinate of %" in a second series of points A, A,, A,.. elc,, equally
separated by intervals of one phase.

e i
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The law of pressure represented by fig. 27%s, therefore, has a form which
is not related to any laws of the closure studied in Note II.

[f now ¢, i. e, the coordinate of point C,*, has a value between ¢, and Gm,
that is, if we have approximately

PN, = %(t, + tm),
(see fig. 28), it is clear that there results
5y s
and, consequently
et e s — e

so that the graph of the pressure has the form of fig, 28bis,

Finally, if p is so small (also relative to 0) that a certain number of centers of
odd indices C*,, C*... are located to the left of the vertical through M* and a
cerfain number of centers of even indices C* C/*.. are below the horizontal
through MY, as illustrated in fig. 29, the intertocked values ¢, %, &,.., for the
cmmapnndmg number of rythmes, are alter Illltl:':]_Y = tm, 48 can be easily proved
from the positions of the circles y,*, v,* v,*.. in fig. 29,

The graph of the pressure representing this condition has the characte-
ristic form of fig. 29, which is analogous to fig. 4tr of closure (§ 8).

This form, however, does not continue beyond the rythme of uneven index
for which Ci* falls to the right of the vertical through M*, or the rythme of
even index, for which Ci* falls bellow the horizontal trrough M*; from there
on we have curves of the form of fig’s. 27%# and 28bis, in wich the pressures
of the total rythme are constan!ly = 3,.".

We shall see, in § 17, that the form of the pressure indicated in fig, 20vis
cannot continue indefinitely during the whole time of the opening operation,
except in the case where ¢ = 0, that is, in the case of opening for the placing
into service a conduit where t]",l{.. WB.IHI is at resl.

The study of the relations which must exist between s and 9 (and which
determine the position of the conduit in the field of the synopsis) in order that
the several cases represented by the fig. ’s 25 to 29 could actually occur, can
be accomplished in a thorough manner only by the analytical method; this
study forms the subject of the following paragraph.

Before starting on this subject. [ wish to call attention to an elementary,
though L‘[tl(‘.lllel}’ interesting, proprietary of the circular diagrams of inter [o-
cked series ol closing and opening operations executed with equal speed (equal
values of 0).

It is easy to see, that on this assumption, and the line ¢ of the loci of the
cenlers C; for a closing operation, and the line ¢*, locus of the centers C;* of
an opening operalion, are symmetrical with reference to the origin O (Fig, 30).
If, therefore, as in fig. 30, we draw the circles v, and v,*, one corresponding
to a closure from 4 =1 lo 4 ==,, and the other to an opening operation from
n=1, to n =1, it can be seen that the points M and N of the bissectrix, which
are symmelrical with reference to C and through which pass all the cireles y .
and the points M* and N* which are symmeltrical with reference to ¢* and
through which pass all the circles y* are correspondingly at equal distances
from ¢ and c*
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The two points M* and N, therefore, are symmetrical with reference to
the origin?0, and the coordinates of N are, consequently, equal to the value
of {m of opening.

Moreover, plotting OB, =1, and drawing the horizzontal B,E, to intersect
with v, in E,, it is evident, that B,E,=A D, ={¢, for the opening of the amo-
unt from 4 =1, to y=1. From the preceding it can be concluded, that the
drawing of the single circle v, give the following 4 values:

- A h—1
¢, = pressure of the direct blow in closure, from 1 =1ton=1n,=—F—;
L’ = limiting value of the interlocked series of pressures in closure;
¢,* = pressure of the direct blow in opening, from n =14, to 1 =1,

Zn® — limiting value of the interlocked series of pressures in opening.
These 4 values are, of course, all referred to the same value of 0.

§ 16. — General laws of the pressure for opening from
a condition of regime; corresponding synopsis.

(Fig. 31 to 33)

The analytical study of the general laws of the pressure of the total rythme
in opening is derived from the study given in § 10, for the pressures of the
total rythme in closure; the only difference being that + 0 becomes = 9. We
have for closing

| t
1) i— 1 g E:
and for opening
t
n=1+ g

It should be noted, however, that, while the duration of the closing gate

operation can not exceed 8, the opening operation is by no means limited to this
value. :
It seems, therefore, that the analysis of the laws of pressure resulting from
these two kinds of operation could have been treated in one single study; from
certain points of view, for instance as regards the cartesian synopsis, this pro-
cedure would have the advantage of giving a more synthetic, more clear sta-
tement of the ensemble of laws which prevail during the phenomenon of the
varying pressure.

However, on account of the novelty of the method, the complexity of the
material, and also because of the technical importance of differentiating bet-
ween the two subjects, I have first discussed the closing operations alone. Our
studies will now be completed by extending them to the opening operations.
It will be seen, by this very study. in what manner these two operations could
have been discussed at the same time.

In a manner analogous to that demonstrated in § 10, it can be shown that,
the series 1,7,,%,,.. being a series linearly increasing on the hypothesis of an
opening operation, the interlocked s:ries (both of the total and intermediate

¥
arga b oL S P ST et e o T L )
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rythme) &,,%,,%, ... tend toward a limit {m, determined by the equation obtained
in substituting

L

— 1
b

=l =% ia=1-+
into the general equation (9)

Ciaat+ &G'—2=2pMi-18i1— 7 &).

In this manner we find

which differs from (19) by the changed sign of the second member.
The value of & in opening, therefore, is <C 1; moreover, it is a function
of the single relation

Lo

gxy,’

<D "D

and is independent of the value of a.

The equations (19) and (49) can, therefore, be considered as being forms of
the same equation, on the condition that we attribute to 0 the sign +, depen-
ding on dealing with an opening or closing operation.

The equation system derived from (9) & (49):

‘_ip—{l-i-Cm]__tm—t,
TR VR ST SR A TRt
2p 1 — @G +8%m)  Im—
207 +L 4+ b — T
2p0—-1— @Gi—1+m) -G
2F"]i+ti +tm _:m—""ti—-I

(22)

is, therefore, applicable to an opening operation also; this system permits of
determining the laws of the interlocked series of the pressures of total rythme
for opening, and, consequently, their form with respect to the limiting value &m",

CARTESIAN SYNOPSIS OF CLASSIFICATION,

As in the case ol the closing operation, these laws, il plotted in the field
of a cartesian synopsis, can serve to the classification of conduits, determined
by lines which are represented by the equations obtained in equaling to 0 the
numerators of equation (22); these equations, the general form of which

G=%m, Oor 20Mi—1=1{j1=—{m (24)*

is identical with that of equation (24) of § 10, are but the equations of the
curves sj ol § 11, in which the sign of the variable 6 was changed.

Let us now assume that the cartesian synopsis, Fig. 31, is completed by
the addition of a quadrant, the ordinates 0 of which have an apposite sign to
that assigned in the quadrant representing the closing operations. It is evi-
dent, that in the synopsis formed by the ensemble of these two quadrants, which
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we will designate the quadrant of closure and the quadrant of opening re-
spectively, equation (24) represents the group of the branches of s located in
the quadrant of closure, while equation (24)* represents the group of the bran-
ches of s; situated in the quadrant of opening; these new branches we will,
designate by s *.

These loci si* are situated between p=4¢ and p =1, because in equation
(24)* » must naturally be < 1; this results from the fact that, for an opening
operation

me > 1,05 > 1 0, <1

These curves, moreover, have g =1 as their common asymptote, as it is
evident that for 0 = , Lim % = 1,Lim % = Lim Zn = 1, so that equation (24)*
gives Lim g = 1.

Locus s*.

The equation of this locus is:

p = {1 ‘jr zm.}

m] it

in which we must substitute the value of . from (49), which gives

4841
P=10+2

This equation, as it should have been expected, is nothing else but equa-
tion (27) with a changed sign for §; it represents the upper branch (Fig. 31)
of the equilateral hyperbola, the lower branch of which is s, in the quadrant
of closure. :

The curve s,* touches the p axis at the point ¢ = 0.5 and determines the left
limit of the zone X * unlimited to the right, in which the trend of the law of

pressure in opening is uniform.

All the curves s.*, s,*. .s% to the contrary, pass through the origin, as it is
clear from equation (24% that if 6 tends toward zero, »; —; tends toward infinity
and, consequently, ¢ tends toward zero.

Locus s,*.

It has the equation

e A, -—-l{tl, + Tm)

2

which can be put in the form

o (60 +7) =2V (0 +1) + (2 + 1) 06" + Vp* + 40

as per equation (29).
The locus passes through the points

050 105 g0 305 A0 e 5,0 B0 510 o
0246 0396 0569 0665 0724 0767 0840 0,870 1,00,

f
P

Il
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The general equation of these loci is very complicated, but il can be repla-
ced, wilh great approximation, by the limiting form
P Ni—1= Lm, OF

0

P = - (50)
V O+ —0+ D)
which is equation (52) with the sign of 6 changed.
From this equation we obtain the table

Sy 8y 85 S, Sy’ S0’

e i) by o = (),169 0,126 0,105 0,084 0,063 0,050

3l =11 » == (1,289 0,224 0.183 (),154 0,118 0,085

i p == (L4447 0,365 0,304 0,267 0,211 0,174

» =3 » = 0,548 (0,463 0,401 0,353 0,256 0,240

» = 4 » = 0,617 0,534 0471 0422 0,548 0,296

» =5 » = (,668 0,589 0,627 0,476 0,401 0,345

> =6 » = 0,707 0,682 0572 0522 0445  (,387

w =T v = 0,738 0,667 0,600 0,561 0,483 0,424

» = 8 » = 0,763 00696 0,641 0,593 0,616 0,458

» =10 »=0801 0,701 0690 0646 05672 0,518

» = 20 » = 0,880 0,851 0,816 0,745 0,737 0,678

et » == 1,000 1.000  1.000  1.000  1.000  1.000

These values permit the construction ol the synopsis of classification for
the pressures of the total rythme in opening, Fig. 31, in which a portion of
lhe synopsis in closure is also shown.

[n order to conserve the analogy with the notation adopled for the sinopsis
ol closure, we will choose the symbols (see fig. 31):

Y * for the unlimited zone to the right of s*

2* » » zone belween s,* and s*

L%
- *
i

in which zones the laws of the pressures in opening presenl different specilic
properties.

" > >> > Hﬂw » Sh#

GENEBAL LAWS OF THE PRESSURE IN OPENING.

We will study these laws with the help of formulas (22) and will refer to
lig. 32, where the diagrams of the laws of pressure in opening are plotted for
a series of conduils sitnated in the several zones Z£.* and also upon the lines
ol separation si* of such zones, for the case 0 =2,

Zone X%,

[For the conduits located in this zone, that is for those which satisfy the
condilion

1 r
a) hh?’ ey 1 ¥
P - 2{ m -+ :]
it is clear that the first of the equations (22) will give

[Em s {,.l} . {ﬁm‘—" 1) -2 ()

and, because {tm < 1, we also have {m < €.

L, ALLigvi, — WATER-HHAMMER,



G6 LORENZO ALLIEVI

The pressure of the direct blow, therefore, for all of this zone, is greater
than the limiting pressure; it can be stated that this is equally true for the
succeeding pressures of tetal rythme, so that the form of the pressure in ope-
ning will be simply asymptotical to the limiting pressure.

In fact, as already pointed out, if the two members of the first equation
of (22) are > o, the two members of the succeeding equations will be also, a
fortiori, (*) > o, which from the series of the second members, results in

LG >8> > Cm .

which proves the preceding statement.
Iig. 32 represents the form of the pressure in opening for the coniuils

characterized by

6=2; p=190; ' p=15; p=115;

¥

the line of these curves was determined very accurately by calculating the
values of the intermediate rythme. The case g = 1.5 is Lhe one illustrated in the

circular diagram fig. 25.
In the same fig. 32 can be found also the diagram of the pressure in ope-
ning for the conduit p =09, 8 =2, situated on s* for which the conclusions

precedingly stated hold good, namely
g, =4 =0l = «uens G

the pressure diagram is made up of a series of ares, concave downward, with
the exception of the first one (see also fig. 26).

Zone B *

The conduits located in this zone satisfy the condilions

1 + Cm t, -+ tm
__2._' > P > :’:"'h ’

it follows that the two members of the first equation (22) are < o, while those
of the second and all succeeding ones are > o. I'rom the series of the second
members it can be easily seen that

L

- -"--- TR 1
U ~

;., 'f E.'m 1
so that, in this case, the series of pressures of the total rythme is simply
asymptotic to the limiting pressure, but this time, by smaller values.
Further, as already remarked in discussing fig. 27 where this case is illu-
strated, because the pressure has attained the value %.* during the first phase,
it must cross this same value twice during each succeeding phase; this explains
the plot of the curve which consislts of a series of ares, concave downward,
and which ares cut the horizontal ordinate {w*; this result moreover can be
easily verified analytically.

(') Because 227, } 2o and &, +&m <7 1 +{m the numerator of the first member of the second
equation (22) must necessarily be > o if the numerator of the first member of the first equation
(22) is > o, and so fort,
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Above this curve, in fig. 32, is shown that corresponding to the conduit
=2 and » = 0.569, situated on s,* and for which

KI {E:Hu §3=-1§3:;l= '“-*-it.m-

This case was discussed in conjunction with fig. 28.
Zone & *,
The conduits in this zone satisfy the condition

& 4 G
> p > =
=1, =N,

from which it results that the two members of the first and second equalion

(22) are <o, while those of the third and following are > o,
From the series of the second members, it follows that

L3 < Ky ettt S TEbs, Lm,

which signifies (see Fig. 32) that the pressure ¢,” of the direct blow is smaller
than the limiting value %.*, while the following pressures of the total rythme
are greater than &n*; but, because the pressure must pass, during each phase
through the value ¢x' the third, fourth,... phases will have necessarily the form
of arecs concave upward.

By extending the preceding results, we can evidently state for.

Zone Z;*: .

If the general condition

3;1'—2 —f‘ E.m t.i—l + Em
S e P e
2 Mi—2 2 fli—1

is satisfied, the conduit will be represented in the synopsis by a point located
bween s; —1* and s; *. In this case:

Ist: The pressures of the total rythme are al ternately = 4w’ upo to t=1i— 1,
that is

s Bt < %m
- t.ﬂ ::" §4 :.::" t-ﬁ :7' B E—ﬂl'

2nd: From the instant { =i — 1
(a) if i is odd, that is if &1 > {m we will have

Ly b Lirg et > Tm;
b) if i is even, that is if &—1 < &m we will have
Lt B e oy iem LUl < Im.

These conclusions embrace, in their most general form, the laws of the
pressure in opening; there seems to be no necessity to develop them further.

The only point which is really interesting from a technical point of view
is the determination of the maximum depression resulting from a given ope-
ning operation; now, it follows clearly from the preceding study that:

A. For all conduits located in the zone Z,%, to the right of s,* the minimum
pressure is the one which oceurs at the end of the gate operation, and this
pressure differs but little from %.° if the operation has a sufficiently long
duration. :
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B. For all conduits located in the zones X¥, . etc. to the left of 5%, the
minimum pressure is the pressure of the direct blow, assuming that the ope-
ration has a length of duration of at least one phase.

It is, moreover, entirely impossible that the minimum pressure would
occur at instants of the intermediate rythme. For this reason we will dispense
with the study of this subject; the only synoptic diagram which presents real
technical interest is, therefore, that of the pressures of the direct blow &~ and
the limiting pressures Zm".

SYNOPTIC DIAGRAM OF THE PRESSURES Im® AND Z°

The construction of this diagram (analogous to the fig. 19 and 20 for clo
sure) follows naturally from the plots fig. 33; it embraces:

A). The series of equilateral hyperbolas passing through the origin; this
system of curves is characterized by the first equation of (22)

2 —1=2p(1—mn, &),

from which, giving to ¢* a series of constant values <1, and pulting

q, =0+ 1):0
we obtain
i o 0 _ 7
P L—a—t0 o

this is the equation of the system of curves, analogous to the equation (35) of
8 12 relating to.a closing operation.

B). The system of straight lines issuing from the origin, characterized by
the equation (49)

igm'|——tm“—1=n:

f

in which constant values < 1 are assigned to &u" and from which follows

% = fm~1 —lm ’ (.'“‘Ej

This is the general equation of the series of lines analogous to equation
(34) of § 12.

The system of the hyperbolas (51) gives, therefore (Fig. 33) the loci of con-
duits, for which the pressure of the direct blow, in the zones . 4.0 to the
left of s,%, has a given value which is the minimum pressure occurring during
the gate operation; the system of radiating straight lines in the space 3% to
the right of s,*, gives, to the conlrary, the loci of conduits for which the mi-
nimum pressure in opening has a given value, which value is smaller than
the minimum which can occur during the gate operation.

Conforming to the opening remarks of this paragraph, in the synopsis
Fig. 83 (as in fig. 31) an opposite sign was given to 0 than that of the 6 ol
closure; in this manner a cartesian representation was obtained in which the
opening operations occupy a quadrant separate from that indicating closing
operations. A portion of this latter is shown in the fig's. 31 and 33.

The form of these two synopsis demonstrates, as already remarked, that
the problems relating to waterhammer in closure and in opening could be
condensed in the same single study.
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PART 2"
OPENING FOR PLACING IN SERVICE.

§ 17. Formulas and general laws of the pressure
in opening for placing in service.

In the case of a conduit originally closed we have

v
L]
U, = 0, b, == =0,
u,
Irom which would resultf:
av, Vi
F__u,,“__ﬂ:r iz ?zw’
while, in the relation
l
ni =1 4 =
we would have
t
0 = =0.
Mi—1

If, therefore, we assume v, to be very small and approaching zero, 0 and ¢
are very small also and approach zero; it appears, then, that all formulas and
graphs derived in the preceding paragraphs must lose all significations.

However, this is not the case, because if, in this assumption, the limits
¢ =0 and 0 =0 are reached, the products which figure in the fundamental
equation system (9), are, nevertheless, finite quantities: in fact, we have

P?h: E-T-: »

o 1=
ﬂuu ‘Hl (a ?l [53}
i d, 1,

]

which is a finite quantity. This observation permits the modification of the
whole system of our formulas by introducing in then, instead of the symbols
defining the initial condition, the symbols which define the final regimen
toward which the conduit tends.
For this purpose, let
v, — the velocity of regimen, corresponding to the degree of opening
attained at the end of the operation;
0,= the duration of the opening operation ;

av, s : ;
o — u"‘*’ the characleristic corresponding to the regimen;
o
v : . . S :
J.= — the ratio of the gate opening to the section of the conduit;
i,
f, — any instant in the first phase (f, < p).
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It is evident, that at the instants
Ly S o by + iy,
we will have

=gt b=ty e p=ftiTly
# ﬂ# E}#
from \ﬂrhich, by means of equation (53
ats av, I, +i—1 : P
e e i TR (EEi e S e T e e " =
s 0, Ue -1 =) (54)

Making successively i = 1,2, 3, ... etc,, and subslituting (54) into the fundamental
system (9), we obtain:

G—1=—22 1,2,
EH
t:ﬁ B ;;sﬂ,__g AL Eh&(f# ﬁl -—--(f,,.:, + 1] tJ) {DD}
S

||||||||||||||||||||||||||||||

This is the specific form of the fundamental system for the interlocking
series of any intermediate rhythm, in the case of an opening operation star-
ting from a complete closure.

I we put I, =1, we obtain the interlocked series of the total rhythm; the
system (55) then lakes the simpler form

ﬁli-_-] :_Ep_iﬁl
ﬁﬁ
(P —2 =2 gi T2l (56)
¥
Sl il s =L?(2 G 3.5,)
*

------------

By means of the syslems (55) and (56) we now can make a full study ol
the laws of pressure for the placing of the conduit in service.
Let, in the general equation (55)

G = ﬁ[ = Cm,
and we get

’m + % fm — 1 = 0 {5?)
#*
which equation gives the limiting value ¢ of the interlocked series, and which
in substance, is identical with equation (49) of § 16,

The cause of this identity is evident, because if the opening operation would
continue indefinitely (that is beyond the degree of opening to which the cha-
racteristic corresponds) the equation which would furnish the limiting value
of the pressure would be precisely equation (57).

3
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GENERAL LAWS OF THE PRESSURE.

[n the case of an opening operation for placing a conduit in service, the
general laws ol the pressure are the same as those for the case of opening of
conduits in service located to the left of s* (Fig. 31 and 32), for which the
maximum depression is the one which ocecurs at the end of the first phase
(depression of the direct blow).

It suflices to compare the first equation of (56) with equation (57) to be
convinced, in fact, that in the case of an opening for placing in service &, < &m
always.

Another particularity of this kind of opening is that the pressure takes
the value {w® exactly in the middle of the first phase, and, consequently, takes
the same value in the middle of the consecutive phases: In fact, putting in
the first equation of (55), £ = 0.50, we obtain, for the instant of the interme-
diate rhythm of the middle of the first phase:

J-Q

which equation, compared with (57) shows precisely that in the middle of the
lirst phase ¢, = ¢, and that, Lumuqueully, we will have, in the middle of the
other ]]lldhLb b= =8 ... =ln.

We can L'Dﬂllllll'L thr., study of the pressure law in a manner analogous to
those of the preceding paragraphs, by seeking the law of the interlocked series
of the pressures of the total rythm,

Combining equation (57) whith the equations (56), excepl the first, and
pulling, for sake of simplicity

o = Pa : Oy
we obtain
2 g — “—:, -+ Sm = t,m oT 5 tu
digy R TEEL T a0
-_li._,_:-“ (&, + :m\ G —__I:L
5] g T 21 =3 t:u :m TTi t-;, {59}
e, — {:n I cm) 1 Sm — :I.
Beg+ 4+ n  Im—E,

ete.
But we know that in the case of an opening for placing in service we always
have
S — K: 22 “:
the signs of the numerators of the first members of equation (59) will deter-
mine the signs of the successive values of {, — 2., Lm —Z,... ete.
Iirst, if
2 Ep ™ (;1 -+ tm} H‘ () 3
all the numerators of the first members of equations (59) will, a fortiori, be > 0;
it i3, then, easy to conclude, that
z {i.{tsi‘ - "::t_m,
so that the diagram of the pressure will have the form of that in fig, 32, for
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a conduit situated in zone £* _ where the ares are concave downward and where
the pressures of the total rythm are < &w' (see also fig, 34¥).
I, on the contrary:

2 E::i-' p— ttt "f' Em} < 0-,.
while the numerators of the succeeding equations are > (), it is clear, that

»

Eg ,} E.-ﬂ ,- {':.] o S M =111y
the diagram then will have the form of thal in fig. 32, for a conduil situated
in zone X_*, where the arcs are concave upward and where the pressures of
lhe total rythm are > 4", beginning at ¢.°.

FFinally, if .
2 Ey — (ﬁl -+ Cm) = “;
we have evidently

r;“:tﬂzt.;s """ -:tm;
the pressure takes the value & in the middle of each phase and also at the
instants joining the phases. The line of pressure, thercfore, in the interval of
one phase, will have a point of inflection (see fig. 35"1),

I'rom the preceding, without extending these considerations to more phases,
the following conclusion can be made:

[f a certain number of numerators of the first members of equation (59)
are < 0, the pressures of the total rythm are alternately = tm for a correspon-
ding number of phases; the succeeding pressures of the tolal rythm, however,
are all > {" or all < 4w’ depending on whether the number of equations (59)
the two members of which are < o, is odd or even,

Finally, if any of the numerators in question is zero, that is, if

2 (I —_— ]} £, = Gi—1 + Cm f[i[lj

we will have
§ == t;_..;_.] = Cpla == 1o v o= tm-
We will see below (see the observation at the end of this paragraph), how
te condition expressed by (60) can be synoptically represenled in terms of
p* and 0%,

CIRCULAR DIAGRAM OF THE INTERLOCKED SERIES ¢, ;.. %1,
With the notation By == g0y
the equation system (56) can be written

G B+ )= g A+ 2
(6, — &+ +28)= be’+2 (©61)
(§, — 20" + (§, +3¢e,) = 13¢,° 4+ 2

from which it appears that equations, (61) in the coordinates & -1 and % repre-
sent a sysltem of circles v,*, v,*... etc. having for centers an radii respectively

Centres (Ladiiy
A SN R ) ol + 2
T-.!# {1.!* i E#}t- {_"' 2 E#} ':.1 o 23} E#ﬁ + 2
st C 22280, (— 3 e,) (2® 4 4%y e, 4 2

vi*  CGi*((f— Degd, (—iey) (T— 1) + %) 4+ 2
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It is evident that this system can be derived, without other consideration,
from that mentioned in § 15, which is illustrated in fig’s 25 to 30, in putling

Fim ﬂ'.r Pl E-‘}k? P "(1.': = ?‘ E#J ele.

In the case of placing a conduit in service, therefore, the circular diagram of
the interlocked series is characterized by the fact that the (irst center is located
on the vertical axis, al a point where the ordinate is — ¢, (see fig’s. 34, 35, 36).

Fig’s. 34 and 34" illustrate the case, where, the numerator ol the first
member of the first equation (39) being a positive quantily, the diagram of
lhe pressure, beginning al the lirst phase, has a form of a series of ares con-
cave downvard, and where all pressures of the total rhythm are <« 4,°.

IYig’'s. 35 and 35" represent the case in which the numerator menlioned
being = 0, all pressures of the total rythm = %,*. The condition

2e,— (&, + tm) = 0,

is evidently satisfied by a single value of ¢, in other words by a single operation.
Inlroducing the values

e e
L=Ve' +1—¢; Un =y (Ve + 4 —is,)

-

derived from the first of equations (56) and (57), we easily arrive al the value
« = 7:v/120 = 0,64 environ.

Finally, I'ig's. 36 and 36V illustrate the case where the numeralor of the
lirst member of the first equation (59) being negative, it happens that a certain
number of the pressures of the total rhythm are alternately = ¢."

SUDDEN OPENING

Considering the first equation of (55)
L+ 25 G —1 =0,

we will call « sudden opening » all such operation which brings the conduit
to a degree of opening corresponding to the final regime in a time 0, = "¢, or
in other words, an operation performed in a time 0, < 1, that is, during the
phase of the direct blow.

On this assumption, the first equation of (55) becomes:

8+ 2048, —1=0, (62)
from which follows:
L 'UJP + 1 —-p, ' (62 bis)

Applying this equation (62%) to the sudden placing in service of conduils
for the values of the characteristic of regime varying between 0.10 and 10,
we oblain.

e = 0110 0,25 0,50 1,00 2,00 3,00 5,00 10,00

¢, = 0,819 0,781 0,618 0,414 0,236 0,162 0,099 0,005

¢ = 0,670 0,610 0380 0,170 0056 0,026 0,010 0,000

The depression, theretore, is the greatest, the largest. the characteristic,
that is when the head is least, which result, of course, could be expected.
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For heads of 10 to 15 met. (o, =5 to 10j, the sudden opening reduces the
pressure pratically to zero, but this phenomenon, as will be seen in Note IV,
does not result in daagerous counter blows,

CARTESIANTSYNOPSIS OF ¢ (Fig. 37)

We have stated that the maximum depression due to an opening for pla-
cing in service is always given by ¢ the pressure of the direct blow; Lhis
stalement limits the technical interest in the cartesian synopsis, in p, and 0,
to the representation of the loci of conduits for which ¢," has a given value,

These loci are, of course, given by the firsi equalion of (56) and are cha-
racterized by
e =),
¥ el
which represenls a series of straight lines passing through the origin; we hay 3
in this manner

4'=09 08 07 06 05 04 038 02 01 005 002

1'!
? = 0,052 0,112 0,179 0,257 0,353 0475 0,638 0.895 1,424 2,120 3,475
%

The figures of this table were used to construct the synopsis fig. 37., which
consisls entirely of straight lines and which therefore in remarkably simple,

In the zone between 6, =0 and 0, = 1, which is lhe zone ol sudden ope-
ning, the loci of the conduils, for which Z.* due lo an opening for placing in
service, has a given value, are, of course, recti-linear vertical segments.

REMARK

The Tact that, in Lhe synopsis g,,0, the loci ¢* = const., are straight lines
and not hyperbolas, suggests an inleresting observation. As pointed oul in
the beginning of this §, if », is very small, and becomes, in the [imit, equal
to zero, p and 0 also are very small and tend equally toward the limit zero.
Consider now the carlesian synopsis in s and 0 for an opening operation (IFig.
31 and 338); it is evident that the conduits for which Lim p=0 and Lim 0 =0
will be represented by the points of a zone siluated in the corner of the e¢oor-
dinate axes, and which zone, in the limil, becomes also infinitely small.

The adoption of the new parameters p, and 0,, instead ol ¢ and 0 confers
a finite value upon the terms ol the formulas, and, therefore, also gives finite
dimensions to be used in the synoptic representation of conduils operaled for
placing them into service.

The plot of the lines (63) passing through the origin, which, as we have
seen, are the loci of the conduils for which ¢ * = const,, reproduces, with finite
dimensions, the infinitesimal ares which constitute the linear elements of the
equilateral hyperbolas (31), in the vicinity of the origin; this statement is proved
by the fact that the straight lines in question are preciscly the tangents of the
hyperbolas at the origin, which can be easily seen by differentiatig equation (51).

Bt s
60/h=0 2k e

Finally, in fig. 37. it is equally possible; io ‘draw a plot of straight lines
issuing from the origin andreproducing, with finite dimensions, the elemen-
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tary arcs of the loci s* in the vicinity of the origin; these lines are the loci
of those conduits for which the law of pressure due to an opening operation
for placing in service is characterized by the vanishing of the numerator of
one of the first members of equations (59), that is, by

2 (l e 1) Ey = G1 + tmg {ED}

which is the general equation of this system of straight lines.

This system which could be called the plot s,*, would divide the synoptic
quadrant into angular spaces Z.* S % .. comprising the conduits for which
the laws of the pressure in opening have a form similar to the corresponding
zones of the synopsis Fig. 31, which were sufficiently developed.

However, this synopsis of classification of the conduits {from the point ol
view ol opening operations for placing in service would have a purely theo-
retical interest only; it was, therefore, omitted from fig. 37.
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NOTE 1V.

COUNTER BLOW DURING RETURN TO REGIMEN

§ 18. — Formulas and general laws of the wvariable
motion with gate at rest

If the gate stops after an operation of closure or opening has induced a
disturbed regimen in the conduit, the hydrodynamic phenomenon produced
from the time of stoppage must necessarily tend asymptotically toward the new
conditions of permanent regimen depending on the degree of opening attained.

Let us designate by =, and Z, the values of 5 and { relative to ap istant ¢,
of the first phase counted from the moment that the gate has stopped moving;
it is then evident that the interlocked series {, %L, L, ..., ete, corresponding to
the instants &, + @, €+ 2¢, .+ 3x... will be defined by the system (9), in
which we substitute n, =9, =9,...=n¢, 0 = py-

We have in this manner

g)
%) (61)
z

||||||||||||||||||

while ¢, designates the characteristic of the new regimen.
It is also evident that lhe limiting value of this interlocked series must
be §m = 1, which value satisfies thet general equation (61) in making

; e T e
t.‘l--l — ol = iy

The circular diagram of the interlocked series at stopped gate (Fig. 38 1o
Fig. 41) illustrales in a simple and elegant form the laws of the return to
regimen.

In this case, this diagram reduces to two circles vy, and y, of centers C,,
(coordinates + p, and —¢,) and C, (coord. — g, and + z,), of a radius /2% 1 2
and located symmetrically with reference to the bissectrix of the axes. These
[igures clearly indicate that the interlocked series?,%,Z%.... tend toward the
value of the coordinate of the point K, that is toward the limit % = 1, which
realizes the new state of regimen,

But this new state of regimen can not be obtained if the gate operalion
is pushed to the complete closure of the orifice; in this case 4, =0 and ¢, =0,
and the system (61) becomes

S +0P—2=0

B

GIE = (62)

------------

and the pressure oscillates indefinitely between the limits Z,° and 2 — "
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The two circles v, and v,, in this case, become one, the circle yy of center
O and radius /2 (fig. 46), and the point of this circle with coordinates ¢,
and ngE;E characterize the limiting pressures.

Returning now to equation system (61), we lind, in wriling same in the
lorm :

2 pet (G + 1) Lp—1
D = i, 1 (63)
2op+ & +1) § —1

that it is the same as equation (22), ol Note IIL.

The several cases of the return to regimen which may occur depend
exclusively on the sign ol the numerator ol the first equation (63

First case,

1
2 fe — (:* -+ ]) < 0 or P % I:.t#- a1y

It is evident that in this case the two members of the first equation of
the system (63) are negative, so that il we have:

| it must be that o e | (fig. 38)
and, inversely, if
A < | il must be that e 4 (fig. 39)

On bolh assumplions the pressure must cross the limiting value ¢, = 1,
al a certain instant ol the first phase following the stoppage, and must take
the same value &' = 1 at intervals p counted from this instant.

In this lirst case, therefore, we can conclude that the pressure takes an
oscillatory character tending asymptotically toward its value of regimen. Figu-
res 38 and 39 illustrate these cases for the assumplion ¢, = 1.

Second case,

: 1
2o G4 1) =0; ‘or py == (&, 4 1).

Iividently we have then

so that the pressure reaches its value of regimen at the first instant of totul
rhylm succeeding the stoppage of the gate, and retains this value, from this
time on.

Third case,

1
2o — (Lo 11505 oe > 5 (G + 1).

In this case the (wo members of the first equation (63) are posilive, and
it can be easily seen from the succeeding equations of the same system (63), that

1f 6> 1, it must be that &, > % > ¢ > oo > 1 (fig. 40)
if §, < 1, it must be that ¢, < ¢, <, < -+ < 1 (Lig. 41).
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On both ol these assumptions, the pressure tends asymptotically and
without oscillations toward its value of regimen (¥).

The formulas and graphs discussed above solve, in a complete manner,
and in a most general form, the problem of the laws of pressure ol the counter
blow ol return to regimen; it is believed, nevertheless, that it is well to make
a complete systematic study of these laws for the typical cases ol counter-
blow succeeding either a closing or an opening gate operation.

This study, which will be the subject of § 20 and § 21, must, however, be
preceded by one of more general character, aiming to determine the condi-
tions under which the analytical expression of the pressure can take zero,
negative or imaginary values, and to define the significance to be attributed
to such results.

This last research, in fact, could have been incorporated in Note I, it
seems, however, better placed here because, in view of the very nature of the
phenomenon, it is rather closely related to the study of the counterblow
with stopped gale; it forms the subject of § 19 below,

§ 19. — General conditions for the pressure becoming zero,
negative or imaginary during a gate operation.

The general equation characterizing the term & of an interlocked series
being of the form:
G+ 2Lt — G = o

(G = Vp'qi F—|— Ci — fi

it is evident that, in order that % should have a positive, real value, Ci must
be > 0. We will now examine the cases for which, this condition not being
fulfilled, ¢ may have a zero, negative or imaginary value.

First case.

rom which

Ci = o, Li—0

In this case, the physical signiticance of the formulas is very clear; we
have measured the pressures Yi in meaters above the atmospheric pressure,
therefore the pressure determined by &* = o, Yi = o means atmospheric pres-
sure. Should this pressure be measured from vacuunm, its numerical value
would be about 10 meters.

Second case:

—_— 3
Gi < o, e > G, G < o.

It should be remarked that & and %* must have the same sign; so that

if it is found from the formulas that &; is negative, then &* must be negative

also. This apparent deviation from the algebraic conventions follows from the
laws of the physical phenomenon of the flow of fluids.

(*} Therefore, there does not exist a fourth case, im which the pressure, after a first oscil-
lation, becomes asymptotic to its value of regimen, to which erroneous conclusion [ arrived in
my monograph of 1904,

e —— R T R P P R e T

i
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Let us assume, for sake of argument, that we have two reservoirs of diffe-
rent levels, separated by a thin wall in which there is an opening. The relation
u=1/2qy, giving the velocily of flow from the first reservoir to the second,
should be written in the form u = —\/2 gy and not u = V—2gqy, if gy is
negalive, i.e., il the second reservoir had higher waterlevel than that of the
first,

In the present case, the signilicance of the formulas is perfectlly clear
and simple as long as the pressure —;" y, does not exceed in absolute value
the numerical value of 10 meters (atmospheric pressure) i.e., as long as the
pressure measured from absolute vacuum is posilive; per conlra, il it exceeds
this value, the formulas will have no physical significance at all, unless, by
hypothesis, we would attribute to the fluid physical properlies which would
permit tensional stresses to exist both in the body ol the [luid and between
the fluid and the walls of the pipe.

Such fluids, however, do not exist in nature; therefore, the preceding [lor-
mulas, when they result in sub-pressures the absolute value of which are grealer
than the atmospheric pressure, indicate that disconlinuilies are produced
within the fluid mass. Perturbations must, therefore, result of such character,
that the produced hydro-dynamic phenomena do not obey any more the laws
ol the interlocked series, expressed by the fundamental system,

Third case:

C <o, (pmi)* < Ci, G imaginairy.

‘The fact that ¢ and, consequently, &' are imaginary, can nol mean, in the
author’s opinion, anything else but thal, in this case, no hydro-dynamic equi-
librium of any order is possible, no malter what proprielies are allributed
hypothetically to the fluid. In practice, therefore, we reverl to case 2, where
— &' ¥, > 10, meaning that, due to discontinuities the phenomenon is beyond
the laws of the interlocked series,

The circular diagram of the interlocked serics applied to these several
cases will evidently furnish a negative segment representing & in the case of
a negalive pressure §*; in the case of an imaginary pressure, per contra, this
diagram does not give any value for % because, as shown in an example below,
the circle yi is not intersected by the straight line on which should be found
the segment representing ;.

In order to better illustrate the preceding results, we are now going to
lind the general conditions which must be satisfied so that the first counter
blow £,* be zero, negalive or Imaginary, reserving for the suceeeding paragraph
a systematic establishment of the laws of the counterblow resulting from the
diverse gate operations.

CONDITIONS THAT &, = 0,

From the two first equations ol (9)

(1 =2
L —2 =0

{ 1—mnk)
7

('4151 T ?tuisr) fl{”

=T»

-3

we geb, by subtraction
Gt 200, 8 — 4o G+ 20 —1=0;

The condition for &, —~ 0 is, therefore;
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—4pm, L +2p—150,
and, eliminating %, by means ol the first equation ol (9)
2p—1 :

2¢y4p+6

Ny (64)

From this equation the following table resulls:

for p=05 075 1,0 2.0 30 40 5,0 10,0 o
n, =0 0,111 0,158 0,200 0,196 0,186 0,155 0,140 0
) =1 1,125 1,162 1250 1,244 1228 1,183 1,163 1
In order that the phenomenon characterized by &,* < 0 should occur, il is
therefore, necessary that the speed of closure, in the first phase be very rapid,
The minimum of this speed of closure (or the maximum of 0) oceurs aboul
for p = 2, or, more exactly for

1 ot .
p =7 (V33 + 3) = 2,1865,

which value is easily obtained by differentiating equation (64):

:Eh_,_,_u ﬂ_ B _}
5 2P 3p—3=0,

Figures 42, 43, 44, drawn for p = 2, and for values
Th {: {}}21 Th } “121 ?I:I = u!g!

illustrate the preceding conclusions by the help of the circular diagrams ol
the interlocked values ol §, and &,. :

A remarkable, and on first thought, paradoxical statement follows Irom
the fact that, when 7, has the value given ny (64), the pressure of the counler
blow ¢ is zero, no matter what is the value of 4,, thal is, whatever may he
the operation which follows that of the partial closure executed in the firsl
phase. _

Figures 42, 43 and 44 easily solve this paradox. In fact, ¢4, being given,
it is easy to demonstrate (*) that for any value of =, that is, for any position
of C, on the horizontal coordinate pa,, the circle y, always passes through the
same point B, of the vertical axis; therefore, as in the case in fig. 44 we have
¢, = OB,, it is clear that, equation (64) being satisfied, we have &, = 0 for any
value of =,.

If, to the conlrary, ¢, is different from 0, it varies with 4, in such a manncr
that it increases in absolute value as #, decreases, as shown in figs. 42 and
43; and can also become imaginary.

CONDITIONS THAT %,* BECOMES IMAGINARY

The condition that the first pressure of the counter blow shall become
imaginary is naturally:
—4dpn, G +2p —12>0 0
which condition implies that of the inequality (61). However, no conclusion
can be derived frnm this condition without making assumption regarding 4,,
1 e, regarding the law of closure.

(*) It suffices to state, that the distance OB, is independent of the location of C, on the
horizontal. '
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That portion of the graph (F ig. 42) relating to C.” and " illustrates the
case when {,° is imaginary, that is, the case for which the absissa ¢7,” of C)”
is sufficiently small so that the circle Y. 1S located entirely below the hori-
zontal through D,.

In an analogous manner we could establish the general conditions for
which g, or¢,... ete. become zero, negative or imaginary; it is believed, however
that no practical purpose is served in further treating this subject, and we
will now pass to the discussion of some typical problems.

§ 20. — Counterblow of depression following complete closure.

In this § we will try to establish the intensity of the pressure of the
counterblow which occurs at the intant 0 + #,l.e. at one phase interval
counted from the instant of the complete closure.

First we will establish quickly the value of this pressure for gate opera-
tions terminating in the Ist. 2nd, 3rd phases, so as o be able to draw general
conclusions and, as an immediate consequence, to plot the corresponding
synoptical representation. The reader will remember, conforming to the nota-
tions established in § 18, and, because here we assume a well determined
perturbing gate operation, that the symbol % (5,° = pressure at the stoppage
of gate operation) must be replaced by the symbol &, where i is the index of
the phase of the operation during which the stoppage occurs; the symbols
Gy &y per contra, must be replaced by i1y, Ziss... ete.; regarding the symbols
Gi-1, ti—2, Li—s etc.,, they correspond to the pressures which occur 1, 2, ... ete,

rile |

phases before the closure, that is, to those related to the degrees of opening
T — %, g — —i—..., as it is easy to 1‘&1:if3.*.
CLOSURE IN THE FIRST PHASE.
0<6<1
The first two equations of the fundamental system, because 7, = 4, = 0, give
ke D

§12 + 233_2 —

sy
S

in order that the pressure of the counterblow % should reach a given value
{(naturaly < 1), it must be that

"o
¥ et

p=z(1—8" or: 3,'=1-3, (65)
which results by eliminating ¢*, and gives, in the cartesian synopsis, the loci
ol conduits situated in the zone of sudden eclosure 0 < 6 < 1, for which the
pressure ot counterblow following the complete closure has a value given
in advance

Inasmuch as equation (65) is independent of 6, these loci are segments of
straight vertical lines, limited by the lines § = 0 and § — 1, and determined by
the following table:

L'=+4+08 +06 +04 L 02 0 — g g 9
0,1 0,2 0.3 04 0,5 0,75 1,0 1,5

Il

F

L. ALLIEVI. — WATER-HAMMER. i
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which values were used in drawing these segments in the synopsis fig. 47 (7).

The value ¢ = 0.5, therefore, is the limiting value of the characteristic for
which the pressure of sudden closure, double of the pressure of regimen, is
follewed by a counterblow which makes the pressure equal to zero. This
phenomenon occurs, therefore, when the Kkinetic energy and the potential
energy of the pipe have the same value. (§ 3, Note I).

CLOSURE IN THE SECOND PHASE.
1< g2

1 . : :
Because 7, = — .. = 7, = (0, the first 3 fundamental equations give
1 EI B -] 1 q ct_!

v 3 9 %,
L ]-:.-F' 1—_3'

RO

=

i~

L[]

5]
I

b
o
i

1
1

I
=

Eliminating %, and &;:

1

1 _{_215_'{:&3

0 =

(66)

by means of which, assigning predetermined valuesto the pressure of the counter-
blow .2, the loci of the conduits, for which these values will materialize im
the zone 1 < ¢ < 2 can be found.

Assuming, for example, .° = 0, equation (66) becomes

T2 : gt e =
s=2: ) o=, or =g (VI FB O,

14 ¢
I 1

which gives the following pair of values:

g =0l 1,2 1,4 16 1,8 2.0
=05 064 0798 0970 1,159 1,366

by means of which the locus ¢,* =0 was drawn in fig. 47; this locus, as camw
be seen, is an arc with a slight concavity toward the right.

The loci corresponding to values between 0 and 1 of the counterblow L7,
have an analogous form; they meet the line ¢ =1 al poinis defined by equa-
tion (65) because equation (66) takes the form of (65) if we make g=1; mo—
reover, these loci meet the line g =2 at poinls determined by

a g
-'=—1—T£“—;=—{1—-:__.,=);.—(1_9—"E-) =0, (67)

=Fy,

obtained by making g = 2 in equalion (66).

(¥} We have plotted here negative counterblows also; of course, the figures have a physical
meaning only if the pressures which they represent are within the limits of the atmospheric

pressure.

Nevertheless, if such figures would indicate a depression below the atmospheric limit, they
would give an idea of the intensity of perturbances resulting from the corresponding disconti-
nuities of motion.
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Assigning certain chosen values to %%, equation (67) will furnish the cor-

responding Va[ue% of ¢
o — U 0,6 0.4 0,2 0,0 —05 —10 —20 —30-

p =052 - 0779 0995 1187 N1.366 1,774 2,148 2,837 3,48
This table furnishes the points of the loci I, = const. for region 1 < (< 2 (fig. 47).

In fig. 45, we have graphically demonstrated, by means of the circular
diagram, a case very close to ¢ = 1.366 ¢,® = 0; this diagram, in fact, was drawn
for ; = 1.300, and resulted in ¢, = 0.28 or ¢, = 0,078, which value is little dif-
ferent from 0.

CLOSURE IN THE THIRD PHASE

&< =t 3.
The four first fundamental equations give, if we make
2 1
L:L:Tji?iz:'ﬁ'lln _q-:zﬂ

E

e [T e

2 e [ (1 ﬂ)

& G,

L, +3;—2:2,¢{3-ﬁ --T;) (68)

A

=

L —

By the same process as that used above, these equations will furnish the

loci of the synopsis for which ;" reaches a chosen, predetermined value; for this

purpose %, , %, and ¢, , should be eliminated between the preceding equations.

We will limit this demonsiration to the case where the pressure of the

counterblow equals zero. Making {,* = 0 in the fourth equation of (68), the
third will give

g
Z—nzg'_"r
0

this, substituted in the second, and after eliminating {, between this and the

f'u:».t equation, finally gives
qn i:':' + 2 :'-: = .I-" 2 2‘5 S 1 2 j

o (=2 (- (B e o

1&1 50 A 320 . ¢*

e - -

which can be put in the form
=0, 70)

r.)_, A 1.}

a quadratic in g°, making it easier to solve numerically.

This equation, in the zone 2 < ; < 3 determines the locus of the conduits
for which the pressure of the counterblow is equal zero; this locus passes
through the points

0= 2000 2313 2580 2819 3,000
o= 1,366 1,600 1,800 2,000 2112

o |

by which it was plotted in fig 47,
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This locus has sensibly the form of a straight line passing through the
origin; it is easy to verify thal this propriety is generally common to all loci
%* = const., in the zone 2 < ¢ < 3,

CLOSURE IN THE i*® PHASE,

It is not dilficult to understand the reason that the loci ¢,* = const., in the
zone 2 < 3 << 3, have the propriely just staled, and which is even more accen-
tuated in the zone 3 < ¢ < 4, ete

Referring to § 10 of Note II, and remembering that, if p and y increase,
the maximum pressure of closure lends toward the value Zy, il naturally fol-
lows that the value of the pressure of the counterblow, at the instant one
phase aller closure, must lend toward the limiting value %.” given by

:;III.H -+ tu.u —_— 2 = ”,

or

%

T T L
Ge® + (;/(‘-’6) 1 - T?; 9 n)

f =@t —2—t) T, (71)

We conclude that the loci of the conduits for which the pressure of the
first counterblow succeeding closure reaches a given value %', have as a li-
miling form the plol of straight lines passing through the origin and repre-
senled by equation (71) which furnishes the lollowing solulions:

Gl = 0,8 0,6 0,4 0,2 0,0) — 05 —10 —20
}‘]‘—:u?mz 0,838 0465 0596 0,707 0,949 1,164 1,500

In order to give an idea of the approximation of the synoplical represen-
sentation ol this equation, we should note that the line %Z.* = 0 of the plot
(71) cuts the line ¢ = 3 al p = 2.121, very near lo point p = 2,112 where the
locus &' = 0 of the zone 2 < g < 3 culs the same line =%y

It is, therelore, justified to adopt, without serious error, as the extremilies
of the loci §," = const. on (= 3, the points determined by the lines correspon-
ding to equation (71), viz:

Lot = 0.8 0,6 0,4 0,2 0,0 —05 —10 —20
p=0,546 1,104 1,395 1,788 2,212 2,847 8462 4,500

Drawing, morcover, lhe straight lines joining these points with the cor-
responding points

p=0520 0,779 0,995 1,187 1,366 1,774 2,158 2,837

which are, as seen before, the intersections of the loci ¢ = consl. of the zone
1 <0 < 2 (represented by (66)) with the lime (=2, we have completed the
synoplic representation in the zone 2 < ¢ < 3.
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Beginning at 6 > 3, per contra, we will adopt, without further study, the
straight lines of the plot of (71) as the points of the loci representing the con-
duits for which £.* = const. The synopsis, fig. 47, is then completed in its full
extent.

[n the same manner, it vould be possible to sludy the cases of counter-
blows which follow the stoppage of the gate after a partial closure of the ori-
fice; the reader would then find that in the case of partial closing, one can
also realize zero or imaginary pressures.

It would be easy to establish cartesian synopsis illustrating such results;
however, it is thought that this study should not be further extended here,
especially as it was discussed in part (for a closing operation ol duration
< 2 p) in the last part of § 19.

¥

§ 21. Counterblows of superpressure following opening operations.

The study ol counterblows of superpressure following an opening opera-
tion presents technically interesting features so far they may be greater than 1
and may start dangerous pressures.

We have seen, in Note III, that the pressure, during an opening operation
remains < 1; on the other hand, in § 18 of this Note we have stated in di-
scussing the equation system (63) that, if, at the instant of gale stoppage, G 1.
we will have, in the following rhytm Z, > 1, should the condition

26— (e +1) <0,

be satisfied. It follows that the phenomenon of superpressure of the counter-
blow > 1 can only be materialized, following an opening operation, if p, < 1,
We will now find the value that this counterblow > 1 can reach.
This. value is evidently given by the first equation ol the system (61), viz..

G S —2=2¢, (5, —8);
from which
W28 — 24+ 25, — %) =0

and it is clear that ¢, will be the greater, the greater is the known lerm
2 + 2?*:Ei-__ :.*2 -

[t is easy to verily that this term will be a maximum when b= pu,and.
in this case, the first equation of (61) becomes

G285 —C 4+ 80)=0,
or solving for % ,
:n =\ Ef'uen o=t u (?2}

from which it follows that to very small values of e correspond very large
values of the counterblow ¢,* (for instance for ¢, — 0.10 we have Al — o L Y
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But the assumplion conducting to equation (72), in the case where ¢, reaches
very small values, is hydro-dynamically impossible. It is, in fact, entirely im-
possible to execute a gate operation which results in very small values of ¢,
for very small values of g,; the reader is referred, on this subject, to the re-
sults of § 17.

Even in the least favorable case of a sudden opening for placing in ser-
vice, equation (62 bisj of § 17 vould give

Ce = Vi + 1 — ps (62) bis
which can conducl to %, = g, only il
1 el Ly |
E;# == F# _ T = {],f}.‘lflc
\ o
bul equalion (72) furnishes, in this casc, for the value of the counterblow

g o= /2 x 0377° + 2 — 0,577 = 1,056 and §* = 1,115 (73)

This value of counterblow, however, is not the maximum which can occur
following a sudden opening, The maximum materializes for a much smaller
value of &, .

GOUNTERBLOW FOLLOWING A SUDDEN GATE OPENING.

‘We will thoroughly stady this case of the counterblow; it is the most
interesting of all which can occur following an opening operation,

(ntroducing the value of the pressure of sudden opening;

Co = Vi 1 — b

into the equation giving the pressure ol the counterblow

K#n -1 izu —2 =2 e {.?'# T tl)

we get

::'1 = [/l P \af;%"' —!—l — 3 F; + 1 — {?1}

which gives the figures of the following table:

-

¥

e = U1 0.15 0.20. 0.25 .30 .40 (.ob 0.75 1.00

¢ = 1074 1087 1102 11077 1.1081 1.098 1.077 1.000 0.912

¢*=1153 1181 1214 1227 1228 12006 1.160  1.000  0.852

S )

The counterblow of superpressure following a sudden gate upuning, the-
refore, is maximum () for a value p, laying between 0,29 and 0,30, bul ils rela-
tive magnitude is only little more than 20 % above normal; in all other cases
it is less than this figure and, when g, > 0,75, il is less than 1 or less than normal.

(*) Differentialing equation (74), we oblain
168 p,* + 225 p,t + 94 0,2 = 9, which gives
p, = 0,285, and *; = 1.1089, Gt = 1,229
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It appears, therefore, contrary to general belief, that there is no danger ol
superpressure when a conduit is suddenly thrown into service. Only for high
heads (> < 0.75,or y, > 100 m) is such a gate operation followed by an oscilla-
tion of pressure which may result in a superpressure of 23 %; for medium
and low heads the pressure tends asymplotically and without oscillation to-
ward its value at regimen.

OBSERVATION

A sudden gate opening, followed by a sudden closure in the second phase
would, however, be dangerous; the pressure which would be produced at the
instant of closure, would be given, in this case by the two equalions

t -
ti —1=—2 F% zl
: | 3 =g L]
E#'_':_'l_:"_'_'_"d'lq"#cﬂ
from which
LP=1+4p, Voo + 1 —4p," (75)

This relation, for g, < 0,75, gives a greater pressure than that of sudden
closure 1+ 2z, while if g, increases beyond 0.75, {,* tends toward the value 3;
we have, in lact:

for ¢, — 010" 080 W0s0, 075 100 200 5000 1000
from (75), %' = 1.863 1.863 2.286 2500 2656 2888 2980 3.000
and 1 4+ 2, = 1.200 1600 2000 2500 3.000 5000 11000 21000

which confirm the preceding statement.

This simple example can serve as an illustration of the method to be used
in studying the complex operations resulting from conseculive opening and
closing motions of the gate; per contra, concerning the repeated rythmic
operation which give occasion to the phenomenon called « resonance », the
reader is referred to the following Note V.

[t should be noted, finally, that the counterblows, which follow the ope-
ning operation of a duration longer than a rhythm, result in phenomena no-
tably less in intensity; the reader can easily verify this fact by working out
numerical examples.

The subject matter of this § can also be synoptically represented, without
difficulty, by the reader himsell.




NOTE V.
PHENOMENA OF RESONANCE.

Preliminary observations.

A conduit in service constitutes a system of elastic masses and members
supported on fixed points; this elastic system, when dynamically impelled,
reacts by periodic oscillations, the semi period of which is equal p.

We can assume, therefore, that rhythmical impulses of a period 2 p avill
bring forth, in the conduit, phenomena called resonance, under the effect of
which the pressure, due to the growing amplitude of successive variations, may
reach values more or less greater than those corresponding to ordinary closing
or opening operations executed according to a continuous law.,

[t also can be forseen, that, because these phenomena rest upon the alter-
nalive play of the transformation of kinetic energy into potential energy and
vice versa, their intensity should be relatively greater for conduits having a
large capacity for storing potential energy, that is, for conduils characterized
by rather small values of ; and which, consequently, are designed for high
heads (see Note I § 3).

The gate operations which may result in rhythmical impulses able to pro-
duce resonances are the following:

A) Closing and opening operafions, rhythmically following each other
without stop; the resulting hydrodynamic phenomena we will designate by
« Resonances due to rhythmical alternating operations. »

B) The progressive closing or opening operations executed in rhythmical
steps; this closing operation is considerably interesting from a technical point
of view; we will designate the phenomena resulting from this type ol gate

eperation by <« Resonances due to rhythmical stepwise closure or opening. »

This Note, therefore, will be divided into two distinet parts in accordance
with these two classes of operations.
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FIRST PART.
RESONANCES DUE TO ALTERNATING RHYTHMICAL GATE OPERATIONS.

§ 22, — Circular and cartesian diagrams of the limiting pressures
of resonance due to rythmical alternating operations.

Pulting, in the equations of the fundamental system :
Qg = Mg = g o w0 s L.‘i:L‘.., 1 = i P Wit 1 M B8 P ete,

in other words, il we assume thal the gate alternalely closes and opens
the orifice partially, (due, for instance, to the « fanning » aclion of the
governor in synchronism with the period of the conduit), the pressure will
oscillate with an amplitude which may increase and may reach dangerous.
values.

[t could not be stated, a priori, that the amplitude of these oscillations
tends necessarily toward a limiting value; at first inspection, the study of this
problem may even seem considerably complicated. However, the circular dia-
gram of the interlocked series solves il in a surprisingly simple and elegant
manner, T

[n fact, each of the two series of circles 1; with odd and even indices re-
speclively, result, on the assumption of alternate rhythmical gate operation,
in a single circle: the circle y, of center C,, (coordinates - e and —p 1,) (see
figs. 48 & 49) for the series of odd indices, and the circle v, of center C, (coor-
dinates — p and - p 4,) for the series of even indices. The two centers C, and
C, and the origin O are on the same straight line and the two circles 1, and
T, pass through the point K situated at a distance O K = /2 on the line drawn
from O at right angle to C, C,.

Let us determine, by the known graphic process, the interlocked series
Gy Gy G- o ete; it will be seen clearly (figs. 48 & 49) that the extremities of the
segments ¢, ¢, % ... ele, determine a broken line consisting of rectilinear or-
thogonal segments located between the two circles v, and v,3 it evidently resulls
Irom this fact:

that the series of values with odd indices ¢, ¢, ¢,... ele., tends toward the
value 7, ordinate of the point K, while the series of values with even indices,
% Ly &,... ete, tends toward the value Z,. absissa of point K.

The problem of the resonance due to an alternating rhythmical operation
is, therefore, solved (",

The limiting values Z, and Z,, coordinates of K, moreover, have the im-
portant propriety of being independent from the characleristic ¢ of the conduit.

(*}) This will also prove the statement made in Note II, that the single circle y, of Lhe cir-
cular diagram of the interlocked series furnishes, at the same time, the pressure of the direct
blow &,* for opening or closure, the limiting pressure of the continued opening or closure tm?,
and also the limiting pressures-Z? and Z.* of the resonance due Lo an alternating rhythmieal
gate operation. (See fig. 30 of § 15, Note III).
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We have, in fact (fig. 48 and 49)

or

and, besides, (76)

from which equations, we have for the limiling pressures Z,° and Z;°

1 1
forx, =1— foryn, =1+ 7
Fig 48 Fig. 49
2 6 24
Z]L-I = (. ; % &y = Gy
0 (0 — 1)° 0 + (0 + 1)° 77
!
7 26— 1)° 20+ 1)
A g == {IE __!' {ﬂ e 1:.'.'! U_‘." + m

It should be noted that fig. 48 corresponds to the case where the gate ope-
ration commenced with a closing motion, and we have, on this assumption,

F-J

Zt B ng;

fig. 49, on the contrary, corresponds to the case where the gate operation com-
menced with an opening motion, and we have, in this case

7l

It is evident, however, that, from the point of view of limiting pressures,
the case, of fig. 49 is only a specific case of that illustrated in fig. 48; it sui-
fices to diminish by one unit the value of % and to give ¢ the value ¢4,. In
order to eliminate all confusion, in the following we will consider the assump-
tion of fig. 48; we will assume, therefore, that the alternale operation has
commenced with a closing motion in such a manner that Z° and Z,* will be
respectively the highest and lowest limiting pressure of resonance, i. e,

Z.?*, the limiting value of the upper series %,°,¢.°,%°
225 » 55 Tw Th Vlgwers S B R e

Diagrams fig's 48 and 49, moreover, suggest the following important obser-
vation.

We have assumed that at the start of the gatée operation a stale of regimen
prevailed aud the interlocked series was constructed in putting I, = 1; this
assumption, however, is not at all necessary.

We can give I, any value = 1, in other words, we can assume that a per-
turbing operation preceded the alternading rhvthmic motion of the gate; fig’s. 48

i ey gy = ek g
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and 49 show that even for {, = 1, the series of the { of odd indices tend toward
Z., and that of the ¢ of even indices tend foward Z ; the values of the succes-
sive members of the two series change, but the limits remain the same.

Thus, if the alternate rythmic operation was preceded by another opera-
tion which has reduced the orifice opening to n, =1 and has determined a
pressure Z.*>= 1, our graphical procedure retains all its value; if suffices to
make g = g4, i. e, to attribute to ¢ a value which follows from the velocity
of regimen corresponding to the degree of opening 4,.

These are, in their asltonishing simplicity, the laws of resonance due to an
alternating rhythmic gate operation. They even seem paradoxical in that the
limiting values of the pressures ol resonance are independent of the characte-
ristic and therefore of the constructive elemenls of the conduit, and depend
solely on the speed of operation. (%)

In order to keep the subject within bounds, we will only study the case
of an alternating rhythmic operation executed in starting, from a stable re-
gimen, by a closing motion. This is the case illustrated in fig. 48, We jusl
saw that the case where the operation commences with an opening motion
(fig. 49) can be reduced to the preceding case by a judicious selection of the
parameter.

Fig. 48 shows that the series of the pressures wilh odd indices is an in-
creasing one, i. e.,

CI{T:::{{:‘____,{Z]?

while the series of even indices is decreasing, thus:

This result depends evidently on the position of the centers C, and C,, or,
for a given 9, on the value of g, which, in fig. 48, is < 1 (the value of 6 in-
fluences the inclination of the connecting line only). :

If, on the contrary, we select for o a value suflicently greater than 1 (as
shown on fig. 50} so that C, falls to right of the vertical drawn through K, and
C, below the horizontal through K, it is clear that both series will be decrea-
sing toward their respective limits.

The series of even indices, therefore, in both cases is a decreasing one.
Moreover, it does not change into an increasing one for the intermediate case
where g is so selected as to have C, fall to the right of the vertical passing
through K, and C, below the horizontal through the same point. The two circles
v, and y, have, in fact, for this assumption, the position represented by lig. 51,
which results in an oscillation of decreasing amplitude of both the % ’s of even
and odd indices, tending toward their respecting limiting values. Fig. 51 shows
this very clearly.

The preceding reasoning is perfectly genmeral in character, because the
value § has an influence only on the inclination of the line connecting the

(¥, It should not be overlooked, howaver, that the spzed of propagation and Lhe length of
the conduit L. are not without influence upon the alternating gate operation, because they de-
termine the period. It could not bz assumed, for instance, that the conduit is rigid (E = =] and
the water incompressible (z = %) because then a == and = = o, and the closing operation should
be execuled in a time — o or at an infinitely great speed.

L.Zl-.n_. -
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the centers; therefore, if this line is fixed, the selection of ¢ can only give oc-
casion to the three cases of fig. 48, 50 and 51, viz:

Ist case: (fig. 48), ¢ is much < 1; the series ¢, % ... is increassing, and the
series §,, L,... is decreassing. :

2nd case: (fig. 51), ¢ has certain intermediate values; the two series each
tend toward their respective limits in an oscillating manner, the amplitudes
decreasing according to an assympiotie law.

ord case (fig. 50) o is greater than a certain limit; the two series are
decreasing.

Finally, if, as in the case of fig. 52, the value of ¢ is so chosen that the
vertical drawn through C,, is at equal distance from the segments giving 7,
and ¢, i. e, if,

20 =14 Z, (78)
we will evidently have
:L.__.tuzcﬂ:,.... :'Zl ﬁﬂ:t_l::?;d '=zu

We also could graphically investigate the limiting conditions for which
the two preceding equalities would occur partially, that is, beginning with ¢,
or %,, or ¢, and complete in this manner the graphic theory of the phenomena
ol resonance due lo an alternating gale operation, in constructing a synopsis
of classification of the conduits from the point of view of these phenomena;
this subjeet, however, lends itself better to an analytical study and will be so
trealed in the following paragraph.

CARTESIAN DIAGRAMS OF THE LIMITING PRESSURES OFF RESONANCE.

[nasmuch as the pressures Z* and Z,* are functions of the parameter 0

g
only, it is clear that the loci of the conduits for which these pressures reach
a given value are represented, in the cartesian synopsis, by horizontal straight
lines: it is easy to determine the elements of a systematic diagram in calcu-
lating the following table from equation (77).

z;: o 20 ?,-.,5 et 2(0 — 11“
6* 4 (6 — 1)° : 0* 4 (0 —1)"

for 0 = 1,000 == 2.1} = 0,00
1.150) = 1.95 = (L0H

== . 1295 — 1.90) == (),10)
1.500 =150 = ().20

== 1.724 = 1./0 = ()30
2.000 = 1.50 = (.40

= 2306 = 1.50 = (.50
== 2.506 = 1.40 = (.60
s T == 1.30 = .70
= 5450 — i) — (.80
= 10.475 =s1=10 = (1.90

It results from these values that the upper Limit of (he pressure can reach
a maximum of twice the static head when the alternating operation is execuled
between the gate opening of the regimen and zero, i. e, complele closure. The
circular diagrams give, in fact, for 4, =0, Z =%
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The lower limit of the pressure becomes zero in this case; it can never
b2come negative.

By means of the values of the preceding table it is easy to construct a
single diagram of the limits Z,® and Z,;°; however, it is preferable to draw
two distinct diagrams, in order to show the comparison between the maximum
(or minimum) pressures of resonance due to an alternating gate operation and
the maximum (or minimum) pressures due to an operation of closing or opening
executed according to a continuous law,

The reader’s attention is called to the fact that this is a first example of

using the synopsis as a means of comparison of the effects of two or several
types of gate operations.

DIAGRAMS OF THE Z,* (fig. 53).

In the synopsis, fig. 53, the horizontals 9 — consf. are drawn, along which
the upper limit of the pressures of resonance Z.* has the values given in the
preceding table; there is also plotted the diagram of the continuous closure
of fig. 20 i.e, the plot of the hyperbolas /*) C,' = consl., and also that of the
straight lines {w' = const., {,” and &w* being respectively the pressure of the
direct blow and the limiting pressure for a continuous gale closure (see
Note II, § 12,

The horizontals Z," = const. of the diagram of resonance intersect the
corresponding hyperbolas ¢,* == const. of the diagram of continuous closure, at
the points of a curve z,, the equation of which, naturally, is equation (78),
or, substituting the value of Z,:

6 — 1)y 2
e =3 (o2 1) (79)
2\Vo' + 0—1

This curve, the locus of the conduits for which we have Z.* =", passes
through the point (9 = Le = 0,59); it has the asymptote ¢ =1, and lies entirely
to the left of this ordinate. ;

The technically important phenomena of resonance due lo alternating
gale operation, therefore, are concentrated in the zoneat the left of the locus z,,
in which (**) the upper limit of the resonance Z,* is greater than the maximum
pressure of closure. ;

We have drawn in full lines, the horizontals of the resonance diagram
within the zone just mentioned, the ares of the set of the hyperbolas between z,
and s, and the set of straight lines Zu* = consl. situated to the right of s, .
In this manner there was obtained a diagram of maximum pressures from the
point of view of the two types of gate operalions, viz.; the continuous closure
and alternating closure and opening.

(*) The comparison, therefore, only applies to the maxima of the total rhythm, which,
however, is justitied by the fact that the law of resonance duo to alternating gate operations
does not admit of intermediate maxima, so that, without error, it is possible to omit from the
zone of comparison the intermediate maxima of the continuous closure (see the observations ai
the end of the preceding paragraph),

{*") We have indicated, however, in fig. 53, the locus at which the hor

izonlals of the reso-
nance diagram intersect the homologous lines of the set

im* = const,, of the plot of continuous

closure. But this locus, the equation of which can be easily determined, and which is also
asyvmplolie to p = 1, has no techniecal importance.




94 LORENZO ALLIEVI

In the zone to the left of z , the pressure of this lalter is the maximum;
in the zone between z, and s, the pressure of the direct blow of the continuous
closure £* is the maximum, and in the zone to ihe right of s,, we can assume,
(als already observed in Note Il) that the maximum is the limiting pressure
of the continuous closure 4w°.

If, in the zone of sudden closure (9 < 1) we draw the vertical lines, being

the loeci of the conduits for which the pressure 1+ 2¢ has the same value as Z*,

and if these lines are projected to intersect the corresponding horizontals of

the resonance diagram, a locus r is eslablished (shown in dash and dotted
line in fig. 53) the equation of which is

1—|—2§._Zl=,

1 26 —1
P =0 = o= . = (80)
2 6 + (8 — 1)

" This locus, therefore, passes through the point (8 = 1,¢ =0,5) and is asymptotic
to the 0 axis.

It has the propriety that for conduits located on this curve, the limiting

pressure of resonance is equal to the pressure of sudden closure, while il is
greater for conduits located between this curve and the 0 axis thigh and very
high heads).
: Thus, for conduits characterized by ¢ =0.2 and 9 = 1.5, which may cor-
respond, for instance, to: yo £ 500 to 700 m.; v, Z 2 to 2,60 m/sec.;
a £ 1100 m/sec.; L ¥ 1500 m.; == 4 to 5 sev., there will result: for the
pressure of sudden closure 1--2p = 1.40; for upper limit of the pressure of
resonance due to an alternating gate operation ZS° = 1.85.

Inasmuch as 3 or 4 alternating motions will suffice to nearly atlain this
limiting value (see fig. 48) the superpressure of resonance would be almost
double of that of the sudden closure.

We have seen that the pressure Z,® is constant no matter what is the value
of ¢, that is, whatever the head; however, as we here deal with a relative
value of the pressure, the effect of the resonance appears to be more dangerous,
or at least, more imposing for the high than for the low heads, as it is capable,
as shownin the preceding example, to induce superpressures of 400-600 m.
and over.

We should observe, however, that, because the superpressure of resonance
can not be greater than #,, it is impossible that an alternaling gate operation
could result in a break of a conduit which is designed to withstand the static
head with the usual coefficient of safetv. We alrcady stated, in § 9, that only
defective conduils can burst

DIAGRAMS OF THE Z.2 (fig. 54).

Jv a process analogous lo lhe proceding, it is easy to construct a compa-
ralive diagram of the lower limiiing pressures of resonance Z,° and the mi-
nimum pressures of opening executed from a state of regime; the reader,
to whom we recommend keeping in mind the remarks made at the beginn-
ing of this § regarding the first motion of the alternaling gate operation,

e

S Lo s e ALl
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could, without difficulty construct this diagram and plot it on the synopsis
of fig. 33. (*)

However, in order not to unduly lengthen this study, we shall limit our-
setves lo the most interesting case, i.e¢, to the opening operation for placing:
the conduit into service, (beginning with 5, =10, see § 17), and to compare the
lower limiting ‘pressure of resonance Z,° with the minimum pressure of the
direct blow £ * which in this case, realizes the maximum depression obtai-
nable by an opening operation.

With this object, we have drawn, in fig. 54, the horizontals 0 = cons! , the loci
of the conduits for which the lower limit of resonance, Z,°, has the values of the
preceding table. and we also plotted, on the same figure, the linear diagram of
fig. 37, (Note III) which gives the pressures of the direct blow due to an ope-
ning for placing in service.

The horizontals Z," = const., of the resonance diagram, intersect the straight
lines corresponding to %" = consl., of the diagram of opening for placing in
service, along the curve the equation of which is easily found. According
to the first equation of the system (56) of § 17, the pressure g,* is given by

'a

4 T R T T
1 i_r* ]

(56)

in which g, is the characleristic ot the conduit for the regimen corresponding
to the degree of opening altained at the end of the opening operation of
duration 0, .

Keeping this definition in mind and, for simplicity, dropping the asterices,
the proceding equalion furnishes, for {* =7

e AN D 0(20— :
e he 20— 1) o

27, 2y2 (0—1)\/0* + (0 + 1)

which is the equation of the locus [, which has for asymptotes 0 = 1 and ¢ = (.50
(fig. 54).

If, moreover, in the zone of opening, we draw the vertical lines represen-
ting the loci of the conduits for which the pressure of the sudden opening
has the same relative value Z.* and if these segmenls are projected to inter-
sect the corresponding horizontals of the resonance diagram, a locus g is de-
termined which, to its left, limits a zone including the conduits for which
the maximum depression of resonance is greater than the depression of the
sudden opening.

Putting 0 =1 in the first equation of (56) and Z, for £, we obtain the equa-
tion of the curve g:

e e A T L N 20— 1 &

—— B

L T2y p—1) B 1)

which curve has as assymptotes p=o0 and 6 =1 and which is shown by the
dotted and dashed line in fig. 51.

(*) In order that such a diagram should completely correspond to that of fig. 53, which could
be obtained in changing the sign of 9, it should be evidently assumed that the first motion of
the alternating operation is {case of fig. 49) an opening motion. On this assumption Z* would
become the lower limit and Z:* the upper limit. In order to avoid confusion, we systematically
adopted the hypothesis that the first motion is a closing motion, even though Lhis assumption
spoils the symmetry of the treatment of the subject.
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§ 23. — Analytical studies of the laws of resonance
Synopsis of classification.

The preceding has complietely solved the problem of resonances due to
alternating gate operation, at least from the point of view of the immediate
technical interest, that is, regarding the maximum and minimum pressures of
resonance,

The reader has seen that this most imporlant part of the problem was
solved by very simple means, which gave us not only the absolute value of
these maxima and minima, but also their value compared to the maxima and
minima produced by other methods of gate operation.

However, it will be found useful to complete this study of the laws of re-
sonance by some analytical considerations which conduct to the summarized
statement of these laws and to the establishment of a very elegant synopsis of
classification.

For
e e P == T

we [ind, [rom the fundamental system, the equations:

e LGS L S B o

1
GG —2=200,,— ) (83)
G+ G —2=2p( T —nut)
G —2=20( 5 — &)
ete. ele.,

while equations (76) result in
AR AT B S e S (76)

Comparing equations (76, and (83) we find, without difficulty, the following
analytical result; if the series ¢, ,%,,%,... and %,,%.,% ... tend toward their re-
spective limits Z, and Z,, all members of equations (83) will separately tend
toward zero.

The analytical demonstration of the laws of resonance is, therefore, accom-
plished if we prove that the numerical value (positive or negative) of the two
members of equations (83) effectively tend toward zero; at the limit, equations
(76) will then be verified. But this demonstration, while entirely elementary,
-and in which the fact must be brought out that both members of equations
(83) can be =0, is lengthy and lacks eleégance. It is easier to arrive at the
result by subtracting the two equation (76) from the two members of each of
-equations (83) which gives:

1_'2:: 2?!11+t1+zl
i.LJ'__ZE_:"“'I""wll“__tt-:: +ZIJ

=7 =~ o) i
t.‘:l_zi__gp _{t-ﬂ-+zn}
.t:ﬂ__zs_-ﬂ:"“?]:—[—t:;hl_z:

ete. ete.
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Multiplying now, member by member, the first equation of this system
(84) and the second, then the second and third, then the third and fourth,
etc., it is easily established that

%:—%:‘i 1 E?:%: < F g::;: <1 Ea:g: .. . etc.
From the first, 3nd, 5ta... of these inequalities:
=i e S e s S M R )
and from the 2nd, 4th, 6th
=2, >0 —Z2, >8 —Z, >...... > Liv1—Z,
which demonstrates that the series ¢, ,%,,%, ...... and ¢,,%,,¢ ... tend respec-

tively toward the limits Z, and Z, .

SYNOPSIS OF CLASSIFICATION.

We have seen in the preceding §, from elementary considerations of the
circular diagrams, the manner in which the form of the law can be establi-
shed, according to which the two series of %; and %:i4+1 tend loward their re-
spective limits. : _

For a given value of 0 and for growing values of ¢ we distinguish the fol-
lowing forms:

(1) Beginning at p =0, and up to a certain value of p (< 1), the series ol
the odd ’s is increasing and the series of the even {’s is decreasing.

(2) Subsequently, and up to a certain value of p (> 1) the two series have
an oscillatory character and tend toward their respective limits by oscillations
of diminishing amplitude.

(3) Beyond this second limiting value of ¢, both series are decreasing.

We, therefore, can assume that the above three cases correspond to three
principal regions of the synoptic plans, which we will denote by @ ,Q_ . Q_.

The finding of the limits to be attributed to these zones and the study of
the manner of transition of the laws of resonance from one zone to the other
will be the object of this §. ;

It is evident that the transition of the laws of region Q_ , where {2i+1< Z,
and %zi > Z, , to the laws of region Q,, where %i. 1 and {; are alternately =
than their respective limits, must occur in passing through the limiting case:

Bitv1=24, or Lei=1Z,

where i may be=0,1,2,3.... etc. We can conclude that there exists between
these two regions a set of limiting loci the equations of which can be obtained
by making the numerators of equations (84) equal to zero; these new loci we
will designate, in conformity with the notation z, adopted in fig. 53, by z2i 1.

The existence of a set of limiting loci instead of one single limiting locus
is not surprising if we consider that the transition of the laws of 2, into the
laws of {, may take place in a phase of the alternating operation of any order.
which means that the form of the law of pressure of a given conduit subjected
to an alternating eperation, may obey the laws of resonance of Q,, for a cer-

L. ALLIEVI. — WATER-HAMMER. i
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tain number of phases, and beginning at the phase of rank i, may obey, to
the contrary, the laws of resonance of Q,.

The same can be said regarding the transitions from Q, to Q,. The only
uncertainty remaining is o know how it is that the equations obtained in
making the numerators of equations (84) zero can give both the limiting set
between @, and Q, and also that between Q, and Q,. But this uncertainty di-
sappears if we observe that the form of these equations is different depending
on whether we deal with those of even indices or with those of odd indices.
We will prove that the first are the limiting loci between Q, and 2Q,, while
the second are the limiting loci of 2, and Q.

THE SET zy; .

The equations of the loci of this set are obtained by equatingto zero the
numerators of the first, 34..... (si +1)* equations of (84), which gives

2:=1 + Z, equation of z,

2 =18, + Z, > > Z,
2p="1 +Z » > 2 (85)
20 =0Gi + Z, > > Z3i41

where Z, must be replaced by its value determined from (77), and % expres-
sed by means of the system (83). These loci, zsi4.1, all have, as their common
asymptote, p = 1, as it is evident that for 6 = oo we have

Lim G3=Lim Z, =1

The first of these loci, i. e., z,, was already studied in the preceding § (see
equation (79)), as the limiting locus of diagram 53; it intersects the line 0 =1
at point ¢ = % We find, after eliminating Z, from the 2nd equation of (85) by
means of the first and 2nd of (83), and interposing the condition 6=1, i. e,
7, =0, that the locus z, intersecls the line 6 =1 at the pointp =-%-‘

In general, it can be demonstrated, tha the line ¢ =1 is intersected

by the loci Z z Z. Fo e A T p ol AL TR
. 1 1 1 | R S 1

t the points Sl L B dE pete

= P B s 1 B 3 5+ 2

These loci, therefore, are -grouped in a set sitnated to the left of the
asymptote p = L.

It is equally easy to draw the limiting curve of this set for i = oo, as,
because (s tends toward the limit Z,, the general equation (85) tends toward
the limit

6 —1)/2
o = Z, = e

QTR (86
Vot — 1)
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which is the equation of the limiting curve sought; this curve passes through
the points

0 =1 2 3 4

p=0 0632 0.784 0.848

and, evidently, has p =1 as its asymptote.
The set of loci zsi .1, is, therefore, situated between the curve determined
by the first equation of (85) and that represented by equation (86), The curves

can be very easily drawn as their equations give ¢ explicitly as a function of
0 (see fig. 55).

THE SET z,,

The equations of the loci of this set are obtained by equaling to zero the
numerators of the 2nd, 4th ... ... efe. equations of (84), which gives

2pn =58 -+ Z  equation of z,

EP"{H:E“ "]“n":, » 2y
2p40 =, t Z » * 2, (87)
2pmn, = Lei1 + Z, AR s oz

These loci have also, as their common vertical assymptote, p = 1, because
we have evidently, for 0 —= oo

Limy, =1, LimGy 1 =LinZ =1,
Moreover, they have their common horizontal asymptote the line 0 = | i

because, on this assumption, 6 = 1;

Cei-1 + Z,

Lim p = Lim — =

Lim »n, = () i

The loci Zi , therefore, have a hyperbolical form and tend toward the
limit
Z, 6 v’:‘i

i LA (88)
M R 0 — 1)

which is obtained in making: i = co, Lim G- = Z, .
The curve (88) has ¢ = 1 and 0 = 1 for asymptotes and passes hrough the
points

it 1.5 | 2.0 2.0 3.0 4.0 5.0 10,0
p=4978 402 318 253 202 176151 " 1.38 ‘117

which points helped to draw it in fig. (55),

It is equally easy to draw the first curve of the set, Z, (fig. 55), because,
in eliminating ¢, from the first equation of (87) by means of the first of (83),
we obtain an equation which is only quadratic®in ¢
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The set of the curves Zs is thus determined; it occupies, as can be seen
in fig. 55, a very narrow zone, asymptotic to ¢ =1 and 6 = 1.

To complete the study of the laws of resonance of alternating gale opera-
tion vin the three regions Q,,Q,,Q ., we drew, in figures 56, 57, 58, the pres-
sure - diagrams for 3 conduits situated in the 3 zones; the ordinates of the
summits of the curves were very accurately calculated by means of equation
(83); these values are given in the following table:

Zone: Q, £, o S0
Characteristics 0 =25 » =025 D= oA e == 8=3 p=3

i 1.175 1.921 1.734

4= 0,724 0.113 0.660

e — 1.353 1 622 1.460

Ly = 0.607 0.226 -0.622

= 1.416 1.842 1.391

Ly = 0.565 0.194. 0616

B 1.450 ' 1.789 1.3855

= 0.543 (0.202 0.6155

L 1.471 1.800 1.385

Z,' = 0.529 0.200 0.615

The diagram, fig. 56, indicates the increasing series of pressures of odd
indices and the decreasing series of the pressures of even indices,

The diagram fig. 57 illustrates clearly how the two series approach their
respective limits by oscillations of decreasing amplitude. Fig. 98 shows the
two decreasing series. (*)

The segments of these diagrams connecting the successive peaks and de-
pressions were drawn in the form of straight lines; in fact, it is unnecessary
to deal here with the intermediate maxima, which, as can easily be demon-
strated, can not occur at the limiting values, which are the ones interesting
from a technical point of view.

PART 11"

RESONANCE DUE TO FRACTIONAL PROGRESSIVE
RHYTHMIC CLOSURE OR OPENING.

P

§ 24. — Fractional rhythmic closure. General formulas.

The present and following §'s give a complete treatise of the fractional,
progressive, rhythmic closure which is a great deal more interesting than the
analogous opening operation to be briefly mentioned in § 27.

(#) These series would be increasing if the operation had started with an opening gate mo-
vement; however, on the same assumption, diagrams 56 and 57 would not be subject to any
change,
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We consider a conduit (g, ¢) being closed according to a law progressing
by rhythmic fractions, that is, with intervals of stops of duration u. In the
case that 9 is an integer

= n

the operation is performed in a manner of diminishing the degree of opening
a TR . -
by the same quantity — , during each phase of odd order, the 1st, 3rd, 5th ete.;

and in having the vanes motionless during the phases of even order, the 2nd,
4th, 6th etc. It follows that the total duration of the operation up to complete
closure will equal 26 —1 or (2 n — 1) ¢ seconds.

In the case that 9 is a fractional number between n and n + 1:

n<i<n+1

we will assume, that the first motion has a duration of the fraction of the
phase (9 — n) u»; the succeeding motions then will have, -as before, a duration
of a complete phase.

We, then, should introduce in the fundamental system (9) the following
values of 7:

n n—1
e igt==sraty ( Fies e i s
(89)
2 1
« « Non -8B = MNen—2 = 7 -1 = Ngn = g Nent1 = 0
and obtain the set of equations:
G —-—1=2%(B—ut:,}
2 i [} F [
' +& =2=2-—(n% —ni)

CH! + :ﬂ'i S 2 — i _P_

g 5 oty eEItERE  Lrioaghy Trnes 90)

Sin—9+ 1 —2=2 ';— {2 Cen—2 — Zon —1)
?En—l -+ ?En —2=2 % tin—z—"' :E‘n}
Cen 4+ Uenpa— 2= 3% Ceon

in the second members of which, when 0 is an integer, we must substitute
n=06-—1

The series of the values of & satisfying the systems of equations which
follow from (90) for divers chosen values of ; and 8, within the limit of prac-
tical application, obey the following laws:

15% LAw :

The T of even indices which salisfy equation (90) are little different from
unity, thus:

:E'\ia.;“\:}:ﬂ---*-;ﬂuﬂul
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2rd [aw:

The & of odd indices which satisfy equation (90) constitute a series of
increasing values, thus:

Before discussing the elements of the demonstration, or rather, verification,
of the above laws, the reader’s attention is called to the important deduction
which is their consequence and which justify these researches.

According to the 2nd law, the maximum pressure of fractional rhythmic
closure naturally must be the last one of the series of odd indices, i. e, the
pressure &1 at the very instant of complete closure. If in conformity with the
first law: Zn ~ 1, the maximum pressure of fractional rhythmic closure, from
the last equation of (90) can be written as

o
ey

Seng1 a1+ 2 o (91)
which formula is highly interesting by it meaning and simplicity.
Inasmuch as the two laws enumerated conduct to the single formula (91),
it is evident that a satisfactory demonstration of the laws will be given by a
systematic proof that formula (91) can be numerically verified with sufficient
accuracy within the synoptic field including those values of o and ¢ which
enter into practical application; this demonstration will be the subject of the
following §. But first, it is believed, that an illustration of the two preceding
laws will be interesting and such illustration will be given by some graphical
and analytical studies upon the series of values which satisfy the system (90).

CIRCULAR DIAGRAMS OF THE INTERLOCKED SERIES (Fig’s. 59 and 60).

Applying the usual graphical analysis of § 6, Note 1, to the fractional
rhythmic closing operation, the following remarks can be easily made on the
resulting circular diagram:

A) The centers Ci of odd indices, C,, C,, C,..... are alined upon a
straight line inclined 45° to the axes and passing above the origin O, (as in the
case of continuous closure). It follows that all circles y; with odd indices, v, ,
A A intersect at the same point M of the bissecirix.

B) The centers C; of even indices C,, C,, C, .. ... are alined along the
bissectrix of the exterior angle formed by the axes, and, consequently, all
circles y, wit even indices y,, Y¢5 Yo - +--- intersect at the same point K of the
bissectrix, situated at a distance —+/2 fron the origin, the coordinates of
which are unity. Figures 59 and 60 clearly show that the points of intersection
of both systems of circles, and the points which determine the exstremities of
the vertical segments % (odd indices) and of the horizontal segments & (even
indices) are all outside of the circle v, of center O and radius /2 passing
through K, . : '

It follows that we always have

i+ 05 2.

TR ey e
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All first, and consequently all second members of the equations of the
system (90), therefore, are positive quantities and the following inequalities
result:

BNl SSms ()t S in = 1) O et 00 Gaa g S Lt L

which, written separately

G ' R—1.
Tl > t! :> t.‘ :} n =g
£)
> >3,
LI PN IR s O, (92)

Qen—8 > G2n 2> éﬁzn_z
§211—[ > zﬂn

The relations expressed by the system of inequalities (92) are the only ones
susceptible of generalization and rigorous demostration for the {fractional
rhythmic closing operation which can not be subiected to the accurate and
elegant synthesis by which we were able to examine the laws of resonances
due to alternating operations.

DISCUSSION OF THE FIRST LAW.

. Writing the first equation of (90) and the equations obtained by subtracting
each equation (90) from the succeeding one, we arrive, after simplification, to
the following system

¢ —1=2%(+0—ny)

' —1=2§ (—0+ 2n%, —nt,)
: (93)
(' —1=25(+0—2n% + 2nf, —(n —1)%,)

6 —1=2£(—0420% —2n7%, + 2(n — 1), —(n— 1)) &,

lllllllllllllllllllllllllllllllllllll

where we can clearly see the formation of the successive polynomes of the
second members.

Considering the second member of the second equation of (93), which can
be written '

B
29'&;'-(-- = -+ ‘J:,—t,)

we can conclude that the trinome in parenthesis is a very small numerical
quantity ; 0; it is composed, in fact, by a positive and 2 ‘negative members,

Y .
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one of which is > and the other < than the half of the positive member, as.
shown by equation (92).

f
If, therefore, n is sufficiently large to make = differ little from uml} and

if the value of p is not very important, the whole second member of the second
equation of (93) is a very small ll'lll]lLllGd] quantity, which justilies the stalement
of the first law

" — 10 ST

%, of course, may be g 1, and figures 59 and 60 illustrate the two cases.
Also, writing the second member of the 4th equation of (93) in the form

1 O — sl
2.::?}(_ nt 25—t =t 2y BT t,.)
we note that the first part of the polynome in parenthesis is equal to the:
trinome, the value of which was just discussed, and, therefore, is very small;
the second part has the same propriety, one of the negative terms being > |
the other < than one-halt of the positive term, as shown by the two first
equations ol the system (92). It is, therefore, justified to state that

E[:_]t\}{' t,‘“\.il

This procedure is evidently general in character; extended to fon, it
permils us to affirm that the proposition of the first law

ﬁ,,“—] g 0 Con ™o 1
is very plausible. As to the study of the limits of its application, these must
be subjected to numerical trials.
DISCUSSION OF THE SECOND LAW,
We already observed, that, as a conseguence of the first law, now established,

fan “u 1, the last L([llall()ﬂ of (90) enables us to wrile the espression (91) of the:
pI‘LSSUIL at the instant of closure

Conga N1 4 2 (91)

|

We also stated that this pressure is the greatest of the successive maxima
of the pressures resulting from a fractional rhythmic closure, which obey the
system of inequalities

e Y e e (94)

This system, in fact, is verified within the limits of vwluva of p and &
which oceur in pratical applications.



WATER-HAMMER 105

Considering the circular diagrams fig. 59 and 60, it is clear that, {, being
nearly equal 1, the two vertical segments which give £, and ¢, fall close to
each other. As the arc y, is drawn above arc v,, in view of the relative position
of the centers C, and C,, it results that
Nt ey

This reasoning is of a general character and can be repeated for %:;— and
Gei1, If %ei—e and & are sufficiently close to unity,

The inequalities (94) are not susceptible of a more rigorous demonstration ;
it is even possible to show (*), that some of them may not hold in certain
zones of the synoptic field; but these zones are beyond the.limits of practical
applications, as we must exclude (as indicated in § 5 of Note 1) the assumption
of small values of p combined with large values of 7, or vice versa, while it
should be remarked that the numerical values of ; encountered in practice are
comprised within fairly narrow limits. In order to confirm that equation (91)
holds with the best approximation precisely in that part of the synoptic field

which is especially interesting from a practical point of view, we observe that
the relation

on Ny 1
can also be written,

len =1 4 ¢

(¥} To illustrate this statement, we will demonstrate that for certain values of p and 0 the
condition ¢, =%, may hold in contradiction to the first inequality of the system (94).

Let us put {; =%, in the 3rd equation of the system (90); then, comparing this equation
with the 2nd of the same system, we oblain:

2nt, = (2n — 1) ;.

Eliminaling %, between this and the 2nd of (90) we obtain a quadratic in £,, from wich,.
eliminating £, by neans of the Ist equation of (90) we can write:

0 2pv32n(@Bn*—2n1)(2p+4n- 1)
Hies 208n* —4n+1) —4dn +1

Because we have R0 n-|1

{a)

equation {x) must satisfy the condition:

n--1
() R

A thorough study of the compatibilities between the numerical values and signs involved
shows that equation (B) can be salisfied only by values of p close to unity and large values
of n. For example, it can not be satisfied for n < 10 but is for

n=15 20 50
3 = 1,0424 1,0317 1,0125

with which values, equation (a) gives
b = 15,900 20,898 50,944

and the verification of the fact that the choice of these values result in ¢, =Z, can only be
made in working to 5 decimals. It appears that the result has no practical value inasmuch as.
these values of p and § are well beyond their normal limits. Finally, the relation ¢, =%, has no
practical importance as not the first, but the last terms of the inequalities (94) are interesting..




106 LORENZO ALLIEVI

designating by ¢ a very small quantity. Substituting this expression of %, in

the last equation of the system (90), we obtain, neglecting ¢’

.l-"r s

Loy, =1+ 2.5 & Es(% +1) (91 bis)

- This new form shows that equation (91) has the more approximation, the
less the values of the parameters ¢ and 0 differ.

§ 25. — Numerical researches of the maximum pressures
due to fractional rhythmic closure. Cartesian Synopsis.

The importance of the systematical research of maximum pressures due
to fractional rhythmic closure (which will be called, for simplicity, fractional
closure) resides in the fact that these pressures considerably surpass the
maximum pressures due to a continuous closure executed with the same speed
(same value of 6), because of the following propositions:

A. The pressure of the fractional closure is always greater than the
pressure of the direct blow.

B. The pressure of the fractional closure is greater than the limiting
pressure 'm, of the continuous closure (§ 10 Note II), for :: 0 < 3:2, that
is, for almost the whole of the synoptic field which is of practical interest,

Assuming (excepting if the numerical results would prove the contrary)
the value given by equation (91) for the pressure of the fractional closure,
proposition A can be expressed by the inequality

<1425

in which ¢*, the pressure of the direct blow, has the value given by the
equation

&

==l

g: 1= 2(1 iy (il m,)

Combining these two relations, we obtain

1}&_'(6_1)’/1+2%

from which we deduce
i_J. -:
1+ 2 P >1

which, of course, always holds good.
Proposition A, moreover, is evidently included in the system of ine-
qualities (94), which are partly confirmed by the above discussicn.

L S ———
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According to statement B, the pressure of the fractional closure must also
(between certain limits) be greater than the limiting pressure of continuous
closure given by equ. (19) of § 10

Po—f lm—1=0
which can be transposed in the inequality

]
125> () () + 1+ &)

which reduces easily to

<3 (95)

=Tl el

Proposition B therefore is also verified.
Moreover, for the conduits located on the line p:0=23:2 of the synoptic

plan, we have {'m =1 +2%~ =4, in other words, both the continuous and

fractional closures result in a pressure 4 times that of the stable regimen, It
is, therefore, evident that we are alt the limil of the synoplic plan which is
interesting from a practical point of view, especially from that of power
installations. |

We will, therefore, investigate, by numerical calculation, in order lo verify
the laws of Ifractional closure, the angular zone extending between the 0 axis
and the line p:0=3:2, wich passes through the origin (fig. 61). For the
remaining zone (which, as mentioned, is not practically interesting) the
limiting pressure of the continuous closure, ¢y, is larger than the pressure
of the fractional closure,

In these calculations, we will select for the different successive values
of 0, those of conduits represented by points lined up with respect to the
origin, so that for a series of conduits we shall have p:0=— const, which
will permit an easier comparison with the results given by equation (91).

Zone 1 <0< 2,

Putting, in system (90), n=1, it reduces to 3 equations:

G —1=2¢ (0 —1)
L+ g —2=25 (¢, =) (96)
B
Cg +t3'_'2—2{}t9

Applying this system to determine %, for 6 = 1,5 and 0 =2 and for diverse
values of p within the limits of (95), so selected that p:9 = consf., we obtain
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for 8 =15

i o 1

o =015 0375

075 1,128/ 7160 “5f 1:875 1 225
¢, =1,267 1590 2

058 2519 3000 3507 4,039

r PrA——

and for 0 =2

e =020 050 1,00 1,50 200 250 3,00

i

('=15334 1681 2119 2540 2997 8500 4048

which corresponds to

o
=010 02

lﬁ
on

0,50 0,75 1,00 1,25 1,50
by which there results from (91)

14+25=120 " 130 200 250 300 350 400

Comparing the series of values of 1 -- 2%— with the values obtained by the

system (96) for 9 =15 and 0 =2, we [ind that the expression of the pressure
of the fractional closure given by (91) is satisfactorily approximate as long A
as p: 0> 0,50, while it is sensibly erroneous for values of ¢ : 0 < 0,50; in which
case the elfective values of the pressure 7' are greater than the approximate
values derived from (91). |
The approximation of (91) is best for p:0=1, conforming to the observation
made at the end of the preceding §.

Zone 2 <03,

Substituting n =2 in the system (90), we have the following 5 equations :

G L2 =20 @t — ) ©7)

from which, limiting ourselves to the case 9=23, we obtain
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for p =030 0,75 150~ M5 5300 < <875 450
zr=139 1,702 2,119 2541 2997 3,495 4,044

while from (91) we get
1+25=120 150, 200 250 3,00 850 400

This system of values is subject to the same observations as already
made regarding the values derived from (96), except that the error of for-
mula (91) for ¢: 6 < 0,50 is even more noticeable.

Zone 3 <0< 4.
Substituting n = 3 in system (90) gives 7 equations from wich, limiting
ourselves 1o the case n =4 we obtain
for po==0,40 1,00 2,00 3,00 4,00 5,00 6,00
v —1411 1,703 2,119 2,541 2,997 3,495 4,042

while from (91)

1+25=120 150 200 250 300 350 4,00
showing that the error for small values of ¢:0 is increasing. In fact, for
o :% =010 the superpressure ¢° is almost the double of that given by
equation (91). .

An analogous sludy for the zone 4 < 0 <5 will confirm the above results,

CARTESIAN SYNOPSIS.

Let us gather the previous results into a single table. Observing that for
=1, lormula (91) and the first equation of (90) both give the pressure as
1 + 2p, (because the operation then is a sudden closure) this table will be as
follows:

§==U1U 0.25 0.50 0.75 1.00 1.25 1.50
0=1 ¢*=1200 1500 2000 2500 38.000 33500 4000
0=1,52"=1.267 1590 2058 2519 3000 3507 4.039
§=2 { =133 1681 2119 2540 2997 3500 4.048
1=8 7°=1395 1702 2119 2541 2997 3495  4.044
0=4 ¢ °=1411 1703 2119 2541 2997 3495  4.042

.............................................

sl 2% — 1,20 1.50 2.00 2.5(0) 3.00  .3.50 4.00

By making analogous calculations for intermediate values, we obtain, by
* convenient interpolation, the elements for the construction of the cartesian
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synopsis, (fig. 61), which gives an adequate representation of the law of
maximum pressure induced by a fractional rhythmic closure.

Excepting the stated anomalies for small values of p: 0, this law, therefore,
presents itself as a generalization of the law of the pressure of sudden closure,
so that
el 20 the pressure of sudden closure can be considered a parti-

ticular case of

I

Lantr=1 - 2% = the pressure of the fractional closure.

This proposition, therefore, synthetizes two interesting categories of
phenomena. :

In (fig. 61) we have extended the synoptic representation to the line
p:0=3:2, in olher words, for the whole zone in which

1 “f 25—:} K?m.i

In reality, however, the zone should be restrained to that part of the
¢
0
closure, which, in this region (see Note II, fig. 18) may be the pressure at
the instant of the complete closure, which pressure is greater than the limiting
pressure {*m. For example, in the zone 1 < 6 < 2, the final pressure of con-
tinuous closure is given by

synoptic plan where 1 + 2% is greater than the maximum pressure of continuous

E:1:} _P' iagﬂg = 2

F .
Putting %=1 + 2 %, the second equation gives {, = 2 6——- 1. This value,

substituted for ¢, in the first equation, after some simplifications, resulls in

3 f
o I 0 (99)

which is the equation of the limiting locus sought.
From (99) we obtain

for 0 1,5 2
p ==l 1.69 2,00

The curve so plotted differs very little from the straight line joining the
points 0 =1, g¢=1)and (0 =2, ¢ = 2)).

In a similar way it can be demonstrated for the zone 2 < 0 < 3, that the
limiting locus along which the final pressure of continuous closure £’ is

equal 1 + 2‘-;— is very closely the line joining the points (0 = 2, p = 25) and
(0 =3, p=4), etc.
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Finally, the true limit of the zone of the synopsis in which the pressure
of the fractional closure is greater than the maximum pressure of the con-
tinuous closure, is not the line ¢ : 6 = 3:2, but a parallel line drawn through
the point (0 = 1, p = 1). This line is shown by dots and dashes in fig. 61.

The cartesien synopsis of the pressures of fractional closure is now
sufficiently illustrated.

§ 26. — Comparison of the pressures of fractional rhythmic closure,
the pressures of continuous closure and the pressures of resonance
due to an alternating gate operation.

PRESSURES OF FRACTIONAL CLOSURE AND PRESSURES OF CONTINUOUS CLOSURE.

We have seen that in the angular zone located between the 0 axis and the
line p: 0 =3:2, the pressure of fractional closure determined by equation (91)
is greater than the limiting pressure of continuous closure I’y given by
equation (19) of § 10:

:.}m s g" :m — l = () {]E})
that is
1 4+ 2 g--- 'm <0 (100)

Let us find, first, the numerical values of the difference

(1 + 2 f}-)— '

by using the same series of values of the ratio ¢:0 as that adopted in the-

preceding §.
=010 025 050 075 100 1,25 1,50

)
Lelig g— =1200 1,500 2000 2500 3,000 3500 4,000
¥m=1,105 1,283 1,641 2082 2618 3255 4,000
Difference = 0,095 0217 0,359 0418 0382 0245 0

The difference, therefore, is a maximum for p:9 about 0,75, In fact,

making ¢ : 0 =, and differentiating the first member of (100) with respect

to @, we obtain the condition that the difference (1 + 2 E—) — Pm be a,

maximum :
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“while, differentiating (19), we obtain

dim
dax

_""'-Jn:n-

(2 zm — fL')

r
=l

Eliminating

.; 1'1 and replacing « by ils value, we gel

I‘;um'—'gtm'l' E_:U’

Finally, eliminating $. by the aid of (19) we obtain the sought for
condition:

@yHHGY+-4%_4h:m (101)

which is satisfied by ¢: 0 = 0,783, which confirms the preceding observation.
Wilh this value of the ratio z:0 we obtain

L4 25 — U = 2,566 — 2,148 = 0,419

which differs very little from the value of this difference corresponding
to p:0=0/75.

This (irst study, therefore, shows that the pressure of fractional closure
surpass the limiting pressure of continuous closure by an amount ol more
than 40 9% of the stalic pressure. Finally, if we consider, instead of the
approximate value given be (91), the effective value of the pressure of
fractional eclosure, calculated for each particular case, and instead of the
limiting pressure of continuous closure, the maximum effective pressure, we
will observe that the differences between the corresponding pressures of the
two series sensibly deviale from the values of the preceding table (although
~conserving the same order of magnitude), and this for two reasons:

15Y) For small values of 0 the maximum pressure of continuous closure
is sensibly greater than the limiling pressure {'m given by (19).

2ud) For small values of : the pressure of fractional closure is notably
superior (as we have already remarked) to the approximate value 1 - L-%
derived from (91),

Making use of the synopsis of classificalion fig. 18, to determine in each
-case ol conlinuous closure, that pressure of total rhythme which is the
maximum pressure, i. e.,

and calculating this pressure for the same cases as those examined in the
Jpreceding, we establish the following table:
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J COMPARATIVE TABLE OF MAXIMUM PRESSURES.

2)-Fractional closure.,
B) Continuous closure.

% = 0.10 Qo5 TR0 S nvE T 400 1.25. - 150
(8 = 1.5)

0 = (.15 0.875  0.75 1125 1.50 1875 = 2.95

@) =1267 1590 2038 2519 8.000 3507  4.089

B)  =1190 1450 1.825 2149 2944 3562 4203

Difference = 0.077 0 140 0.233 0 370 0.056 -0.055 -0.164

(0 =2)
¢ = (),20 0.50 1.00 1.50 2.00 2.50 3.00
7) = ] 334 1.681 2.119 2.040 2.997 3.500 4,048

B) = 1.182 1.407 1.698 2.158 2.798 3.500 4.248
Dilference = (1,152 0.274 0,421 0.382 0,199 0.000  -0.200

(0 = 3)

0 — 0.30 0.75 1.50 9.95 3.00 3,75 4.50

2) =180 1702 ° 2119 2541 2097 3495  4.044

8) =1168 1841 1.656 2108 2691 8377 4188
Difference = 0.227  0.361 0463 0433 0306  0.118 -0.144

{:f.' —= 4] _
0 = 0.40 1.00 2.00 3.00 4.00 5.00 6.00
@) =1411 1703 2119 2541 2997 3495 4,042

B) = 1,156 1.294 1.643 2.086 - -2.654 3.339 4.132
Difference = 0.255 0.409 0.476 0.455 0.342 0.156 = -0,092

This table confirms, therefore, that the effective difference between the

pressure of fractional closure and the maximum pressure of continuous closure,
may, for certain conduits, reach 40 to 50 % of the static pressure. Moreover,
it indicates, that this difference may even increase for small values of ¢ and
increasing values of 0; for instance, in the third column (p: 0 = 0,50), we see
~ that beyond p = 1, the pressure of fractional closure remains equal to 2.119,
while the pressure of continuous closure diminishes with increasing’ values
of 8. Consequently, the difference between the two pressures should increase.

L. ALLIEVI, — WATERAMMER. 8
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Cases corresponding to values of 6 greater than those examined are not
possible in practice; the last values of the table already are outside of the
field of probabilities,

The fractional rhythmic closure, in fact, can not be considered as an.
intentional gate operation; it will occur in pracfice only accidentally due to
the action of the governor under the influence of entirely uncommon con--
ditions, or to the involuntary mistake of an operator. It is hard to conceive.
that such accidental operation could retain its rhythmic form for more than
2 or 3 phases.

Only that part of the synoptic field, for which 6 <2 has, therefore, a
practical importance, but it remains true, nevertheless, that the general resulls.
of these researches merit the whole attention of the engineer, inasmuch as the
resonance due to a fractional closure, a phenomenon formerly ignored, gives.
for almost the whole of the synoptic field the maximum superpressure which.
can be realized by a given speed of gate operation. The exception is a small,
zone, where the alternating operation is the most dangerous.

Numerical examples.
15t) =2 p=020
which can be realized for
gy =500 ‘opp=2 a=1080: L=1620 . <= 6"

Closing the gates halfway in 3 seconds, then leaving them stationary for
3 seconds, and finally closing them in 3 seconds, we obtain

a superpressure of fractional closure 0,334 X 500 = 167 =

while the superpressure of continuous closure is 0,182 x 500 = 91 =

difference in superpressure 76 =
ond) =2 =040

which can be realized for
y, =200 p,=2 a=1000 L = 1250 T =5

With an analogous operation of intervals of 2,5” each we oblain

a superpressure of fractional closure : 0,681 x 200 = 136 ™

the superpressure of continuous closure is 0,407 x 200 = 81 m™

difterence in superpressure ! 76 ™
31:(1) (B = 3 £ = 1’5“‘}

which can be realized for

Y, = 10 v, =25 a = 800 L = 720 t=:5".

superpressure of fractional closure 1,119 X 75 = 84 ™
superpressuse of continuous closure 0,656 X 76 = 49 ™
difference 35 m

.-J"-c—l—r_-“
T,
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-

PRESSURES OF FRACTIONAL CLOSURE AND PRESSURES
OF ALTERNATING GATE OPERATION.

We have seen that the pressure of fractional closure is always greater than
the pressure of the direct blow, and we stated in § 22 (See figs. 53 and 54)
that the pressure of resonance due to an alternating gate operation is superior
to the pressure of the direct blow only in the zone £, limited by the set of
curves zzi+1 . The comparative study of the pressures of fractional closure
and of alternating operation will need to extend to this zone only.

The approximate value of the pressure of fractional closure, corresponding
to (1) will be

Cent1=1 + 2% (91)
The upper limit of the pressure of resonance being

F 1] 2{19 oy |

' = ﬂ-.i‘:_“"‘rj':_”'u (77)

the condition Z," = {'sn4-1 leads to

1 200 —10

= o901 1 (102)

equation of a locus, the absissas ¢ of which are equal 0.5 for 0 =1 and 0 = oo
and pass through a maximum ¢ = 0.6 at about 0 = 1,7.

In reality, the zone where the limiting pressure of resonance due lo an
alternating gate operation is greater than the pressure of Iractional closure, is
greatly reduced, due to the fact already that formula (91) is erroneous for g:0
smaller than 0,5.

The locus R, along which we have eflfectively

2 T 0 N
G 2n4-1 = a‘.{,

therefore, must be determined point by point in plotting, on the diagram ol
fractional closure, the horizontals Z° —= const,, of the diagram of resonance
due to an alternating operation.

This plotting was done on fig, 62; it was limited to small values of ¢ and
6 on the theory that this study is essentially interesting in the case of high

~and very high head conduits situated to the left of the locus R, which

approaches the 0 axis indefinitely for increasing values of 9.

For such conduits, the maximum pressure of resonance, therefore, is that
produced by the alternating gate operation and not that of the fractional
closure. i |

To complete this synopsis of comparison, we have also shown the locus r
of fig. (53), to the left of which are located the conduits for which the pres-
sure of resonance due to an allernating gate operation is also greater than the
pressure ol sudden closure.

Remark

In all the researches exposed in § 's 24, 25 and 26, on the subject of the
maximum pressure of fractional closure, we have considered the pressure at
the instant of complete closure only, in this manner excluding, a priori, the

i i)
S . W L e, e T N il T S ST P = e e et A e T R L e N T R T I P R B il T e TR T

i B R R
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possibility of an intermediate maximum in the last phase, i. e., in always gi-

ving the plot of the pressure the form of the diagrams fig’s. 59 bis and 60 bis
This, in fact, is correct within the synoptic field and can be proven analyh—
call}v This prnof however, is omitted.

L4

§ 27. — Fractional rhythmic opening.

The phenomena of resonance due to a fractional rhythmic opening pre-
sent only a mediocre interest from a technical point of view, inasmuch as.
they involve no great superpressures nor great subpressures, The transforma-
tion of the potential energy of the conduit into the kinetic energy which cha-
racterises the opening operation, follows, in this case, a rhythmic law with
intervals of stoppage at the ends of which the increase of energy of the water
column produces a positive counterblow. This counterblow must have a
diminishing tendency as the increase of the efflux opening more and more
facilitates the flow of the liquid column.

Consequently, we can expect that the phenomenon may be of some inte-
rest during the first phases of the gate operation for conduits storing a large
quantity of potential energy, i.e., for conduits of high and very high heads
(small values of 2).

We shall discuss the case of fractional rhytmic opening for placing the
conduit in service, that is, the fractional opening beginning with the state of"
rest of the liquid column. This is the most characteristic case and the most
important. The reader is reminded of the formulas and graphic construc-
fions of § 17.

First of all, regarding the form of the circular diagram in the case of an
opening for placing in service (see also fig. 34, 35, 36) it is easy to see that,
for the case of fractional, rhythmic opening, it will be modified in te follo-
wing manner:

(A) The centers of odd indices CF (&2 .
with abscissae 0 + e, + 2e,...
and ordinates — £, — Dy — Be,..

are here yet alined on a straight line at 45° passing above the origin 0, and’
consequently, all circles y* with odd indices pass trough the same point M*
of the bissectrix of the axes;

(B) The centers of even indices 2 CF Gl
of abscissae — — 2=, — 3. ...
and ordinates + &, + 2 ¢, + 3e,..

are situated on the bissectrix of the exterior angle of the axes; all cireles y*i of
even indices, therefore, pass through the same point K, of the bissectrix of the
axes, at a distance from the origin O of O K, = \/ 2 (the coordinates of K, are
unity). :
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Let us now examine the diagram of fig. 63, which is constructed for a
rather small value of e, = ﬁﬁ say 0.19 (*); it is evident that on the hypothesis

of fractional opening, whlle the & of odd indices remain below 1, the first & of
even indices may rise above 1. _ :

In facl, in figure 63 we really have ¢, > 1, ¢, > 1 while ¢, ~, 1 and the suc-
cessive lei's, determined by the circles ysi*, hecome < 1 and diminish pro-
gressively,

This decrease is a great deal more accentuated for larger values of the
parameter e, as shown in fig. 64, where e, = 0.4; it is shown that ¢, is already
about equal to 1, while ¢; is notably < 1.

It is also easy to see that for =, = 1 it results from the position of C_* that
already &, is = 1, and consequentty, the problem is of no interest.

We, therefore, will turn our attention to the conduits and to the gate ope-
ration Lhdldﬂlﬂl‘l!ﬁd by small values of e, and will mpeclallv examine the se-
riés ol the pressures ¢2,¢.>2 ... ele.

In fact, the study of the value of the first counterblow ¢? has been
fully discussed in § 21 (Nole IV) because it is nothing ‘else than the
first counterblow (**) after the stoppage of the gate succeeding a sudden
opening; it is evident that the continuation of the opening after the counter
blow has taken place, can not have any influence upon its value.

The system of equations (56), § 17, which determines the interlocked series
of total rhythme of the continuos opuunf operalion lor placing in service,
evidently becomes, in the case of a fractional opening

Ef—1=—2¢C
G4 —2=2¢( 4 — ()
o &+ & —2=2%, ( ¢, —2L)
pa a9 e (O L (103)

L0+ G — 2= 2, (28, —3L,).
faid _|— tﬁi — 2 — 2 Ex {3 t-a_gt.rr',)

in which equations, as will be remembered, ¢, — PT (see § 17), p, and 9, being

the values of the characleristics for the regimen “attained by the opening
operation.

By means of (103) we should now find the conditions of maxima of ¢,,%_..
etc.,, but an analytical research is already excessively complicated for the sole
value of ¢,, while the same result can be obtained more easily by numerical

trials made systematically for small values of —g comprised between 0.05 and 0.75.

(¥) Which would be realized by a conduit of y,= 200 to 300m L =700 to 1000m, whic
would need a time to from 4 to 6 seconds to produce a velocily of regime v, of from 2 to 3m
by a continous opening operation.

(**) In order to understand the subject more clearly, the reader will recollect that in § 22 we
have designated this counterblow by {?* as being the first pressure of total rhythme after the
stoppage of the gate, while in the present case this pressure has the index 2, being the second
pressure of total rhythme of the series of pressure of fractional opening.
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15t trial e, = 0,05

that is, for Pe=010 * 015 020 etc.
0, =200 3,00 400 >
last term & & L »

By means of the system (103) we obtain the following values of the pres-
sures of the total rhytm:

Kzn t—g’ iﬂﬁ {4! 3 z; t;ﬁi th ::RE
0,904 — 0,83 —— 0,809 — 0,818 —
— 1,086 — 1,134 — 1,141 — 1,121
which shows that the maximum pressure occurs for p, = 0,15 and 0, = 3.
Consider now the pressure I, =1,134; it is clear that for the conduits

(py = 0,10, ® = 2) the fractional gate opening results in a superpressure equal to
2/3 of that of sudden closure.

2do trial ¢, = 0,10

that is, for D=0 =D B () G ofE,
fJ# =2 3 4 »
last term t_l Eﬁ zs b

We obtain with the help of (103}

?’Iﬂ tss {ﬂ tlg d 2 §| 3 p
0,819 — 0,726 — 0,740 —
= 1,147 — 1,179 - 1,136

which clearly shows that for increasing values of e, , the maximum positive
counterblow occurs at an instant approaching the beginning of the operation,
In fact, it is not anymore the pressure of index 6, but that of index 4 which
has a maximum value; the maximum superpressure for ¢, = 2 and 0 = 2 is
about equal the half of the superpressure of the sudden closure.

3rd trial e, = ,15

that is, for te = 0,3 0,45 0,6 etc.
, = 2 3 4 >
last term L. L I
We obtain from (103)
{.".: tng t; t“ﬂ t__js ;ﬁa
0,741 0,653 T DY s
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The pressure with index 2 becomes the maximum pressure of the counter blow,
while that of index 6 continues to diminish. We can observe how, by the
decrease of potential energy, the phenomenon of resonance due to a fractional
rhythmic opening gradually loses intensity and extension.

4th 5th and 6t trials.
< L L & Ls® Ce”
e, =025 0610 1,225 0572 1,124 0,600 1,032
e, =050 0382 1,160 0501 0958
¢, =075 0250 1,00 0642 ete.

which results show the rapid decrease of the intensity of the phenomenon
with increasing values of g,.

Beyond p, = 0,75 the phenomenon loses all interest, inasmuch as for such
conditions all pressures are smaller than unity.
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INTRODUCTION

In December 1902, Mr. Lorenzo Allievi, C. E. published his monograph
Teoria Generale del moto perturbato dell’acqua nei tubi in pressione (General
Theory of the variable motion of water in pressure conduits) in the < Annali
della Societd degli Ingegneri ed Architetti Italiani ». A French translation, by
the author himself, appeared in 1904 in the « Revue de Mecanique ».

To the writers knowledge, no English translation of this paper was ever
published; however, in recent years, one of Allievi’'s formulas applicable to a
specilic case was repeatedly quotel in the American technical press as repre-
senting « Allievi’s solution » of the waterhammer problem. The improper ap-
plication of this formula caused a great deal of confusion and this, in turn
resulted in frequent and unjust criticism of « Allievi’s solution », until, in
the course of his discussion of Mr. N, R. Gibson’s excellent, paper on < Pres-
sures in Penstocks » (Transactions A. S. C. E. Vol. LXXXIII), the writer has
given a briel summary, and indicated the method. of the practical use, ol the
formulas derived by Allievi in his 1902 paper.

So far as the writer is aware, Mr. N, R. Gibson’s paper was the first one
published in the English language which gave a true account of the time his-
tory of the pressure wave generated in a penstock during the phenomena of
waterhammer: as stated in his discussion, the results oblained by Mr. Gibson
are identical with those found by Allievi's formulas.

This remarkable study (Allievi 1902) differs from all monographs previ-
ously published on the important question of waterhammer bothas to the ori-
ginality of the method employed and as to the importance and novelly of
the obtained results. Not wishing to use the paths already broken by his
predecessors, and aiming primarily to come as close as possible to the solution
of the phenomenon, Allievi starts by systematically and knowingly ignoring
all that was accomplished before him; he takes up the problem at its origin
and presents it as his remarkable intuitional qualities make him foresee that
it must be.

However, as judiciously stated by the Author at a lecture given on this
subject in 1911 to a group of engineers at Geneva, the paper of 1902-1904 does
not constitute a « Theory of Waterhammer », it is only its <« mathematical
tool ». In the Notes, the translation of which is here undertaken, and which
were published in the « Atti del Collegio degli Ingegneri ed Architetti >, Mi
lano, 1913, Allievi makes a wonderful use of this tool forged by himself, and
presents to his readers this « General Theory >, the fruit of his recent re-
searches.
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By eliminating all arbitrary assumpticns in the derivation of the funda-
mental equations of the waterhammer, Allievi succeeded in giving a mathema-
tical translation of the phenomenon, which is the exact expression of its phy-
sical fealures; in this lies the originality of the aulbor’s first work (1902-1904),

This method of facing the problem, together with the interpretation of the
hydrodynamic function played by the reservoir of coostant pressure situated
at the upstream end of the pipe, which function consists in reflecting toward
the gate (with opposite signs) the waves of surpression and depression car-
ried there by the conduit, has given, so to speak, the key of all the water-
hammer phenomena,

Allievi’s monograph of 1902, of which a brief summary will be given
following this introduction, permits already to determine analitically the cha-
racter of a waterhammer due to any kind of operation of a gate regulat-
ing the efflux of the conduit; but as already stated above it is substantially
only the mathematical tool of a theory of waterhammer; it does not yet con-
tain a systematic and synthetic study of the general laws of the phenomenon,

As a matter of fact, in this first monograph, only those elements which
mechanically characterize the conduit, such as the diameter, the thickness of
the pipe-shell and the moduli of elasticity of the metal and liquid, are absor-
bed in the expression of the speed ot propagation a of the waterhammer;
while the elements which characterize the functioning of the conduit, that is
the pressure height y, and the velocity of permanent motion v, are still in
evidence, which makes impossible all systematic generalization of the laws
governing the pressures during the perturbed flow.

There arose then a new difficulty, seemingly considerable, a ditch, which
the author has crossed wih greal elegance in his new researches; the publica-
tion of which in the English language is here undertaken.

With the help of a quite elementary transformation of his fundamental
formulas, Allievi demonstrates that, no matter what be the gate operation,
the relative values of the pressure in the disturbed regimen (i. e. the ratio
of the pressure to its initial value) depend, first, on the method of oper-
ation, in other words, on the series of the degrees of openings of the gate,
and, second, on a single parameter, equal of one half of the square root of
the ratio ot the kinetic energy and the potential energy contained, during
normal (low, in a unit length of the conduit.

This parameter, which Allievi designates by ¢ and which is equal to

e chp;
Nemorand

absorbs all constructive and funtional elements of the conduit; it is there.
fore justified that the author calls it the «characteristic » of all conduits in
service.

There is, in this simple remark, an extremely fertile and powerful instru-
ment for the generalization of the phenomenon, as it is evident that an infi-
nite number of conduits, the diameter, thickness, elastic constants, normal
pressure and velocity of which result in the same value of the characteristic p
will obey the same system of laws in regard to the phenomena of the water-
hammer.
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Hovewer, the conduits so corresponding would yet differ from each other,
from the point of view of these phenomena, by their lenghts L. Allievi elimi-
nates this difficulty by adopting, as the unit of time, the phase, or half-rytm

po= %&E’ of the pressure oscillations.

By help of these transformations, the laws of pressure during the variable
motion are so expressed as to be functions of only two parameters; the cha-
racteristic p, and the time 0 of closing (or opening) of the gate measured by
the new unit of time just defined. This transformation also permits of the
plotting of graphs where, in a cartesian system of axes 6 and p, all laws of
the waterhammer, for all possible conduits and all speeds of gate operation
imaginable can be represented by curves, the ensemble of which constitutes
the diagrams of the different phenomens and different categories of the con-
duits.

These diagrams, which the author calls « cartesian synopsis » constitute
the most impressive results of these new theories; the engineer will find that
they give as simple means as imaginable for solving in a few second and with
the greatest ease, all the problems relating to this class of phenomena.

Another instrument of graphic analysis, equally fertile and one which the
reader will much appreciate, consists in what the author calls the « circular
diagrams »,

Adopting as the unknown the square root of the relative value of the
pressure (in other words the relative value of the velocity of efflux through
the gate) Allievi demonstrates that it is easy to obtain a series of values of
the pressure during the perturbed flow by drawing a series of circles.

The extraordinary fertility of this method appears among others in the
fact that the drawing of a single circle is sufficient to determine.

Ist — The maximum and average pressures produced by a closing oper-
ation,

2nd — The maximum and average pressures produced by an opening oper-
“ation. '
ord — The limiting pressures maximum and minimum, of the resonance.

Part of this introduction, upon the Author's request, was taken from the Preface of the
translation by R. Neeser, Professor of the University of Lausanne.

The following abstract of Allievi’s 1902 paper is also by Mr. Neeser, and is translated from
the Frenh original.
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GENERAL THEORY OF THE VARIABLE FLOW OIF' WATER IN PRESSURE CONDUITS

In the following short abstract ol part of Allievi’s 1902 monograph, the
genesis of the fundamental equations which constitute the starting point of
the « Theory of Waterhammer » will be demonstrated. This will serve 1o
acquaint the reader with the formulas which are referred lo as assumedly
known in § 1 of Note 1.

I. Differential equations and fundamental equations
of the variable flow of waler.

Consider a horizontal, indefinitely long cylindrical conduit of constant
diameter and wall thickness, having a gate at one end which is able to close or
open the discharge orifice. Let us also assume that the influence of the friction
of the water against the perimeter can be neglected; this hypothesis is per-
fectly permissible in all cases where the loss in head due to friction is negli-
gible compared to the pressure intensities accompanying the phenomena of
the variable motion.

Further, let

r,D,e, be the geometrical elements of the conduit: radius, diameter,

thickness;
I, the modulus of elasticity of the conduit wall;
g, w, » » » » and the specilic gravity of the llowing
liquid;
U,,P,, the velocity and pressure of uniform flow (regimen), before the
perturbance;

v, p, the velocity and pressure at any instant and at any section;
Y, ¥%,, the pressures, expressed in height of water column, cm"respm'lding
respectively to the variable regimen and to the initial uniform
regimen.,

- Let @ be the abcissa of any section, measured along the pipe from the
orifice toward the reservoir, (in the direction opposite to that of the flow); then
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the general equation of the variable flow is;

Ep w &
= (E—)

or, considering the horizontal position of the » axis and the assumed direc-
tion of z,

@)

because v is a function of x and fi.

The equation of continuity will furnish a new relation; it is sufficient to
express that the difference of the volumes of water flowing, during the time
df, across two sections of the conduif a distance dr apart, is equal to the vo-
lume (of water) stored, during that time, in the element dr of the conduif;
but the variation of the volume of this element is made up of.

resulting from the elasticity of the conduit wall, and of

rd
'r:rad-—-r.,ﬁdf,
e 6

due to the compressibility of the liquid.
1 : s ;
Neglecting the terms in o and the differentials higher than the first order,
one thus obtains:

v (1 , 1D\¥
‘“(?+E?)a": (IT)

These equations (I) and (II) are the fundamental differential equations of the
variable flow; they can be reduced to a simpler form by neglecting in equa-
. S (DS : el e
tion (1), the term in Pt this simplification is permissible, because the pheno-
mena of waterhammer occur almost instantaneously, so that the variation of
v, with respect to the abcissa « is certainly negligible compared to the varia-
tion of the velocity with respet to the time. ;

Finally, putting
w (1 15Dyl
q (’ E {—3) S o (TII)
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in which equation a, as it is easy to prove, has the dimensions of a velocity,
equations (I) and (II) become:

3p &y

7
v g dy ( Y.
Sz a*di ]

The general integrals of equations (4) as can be readily verified, can be
written

Equations (IV) and (V) indicate that the phenomenon of waterhammer is
characterized by two systems of co-existent variable pressures which are pro-
pagated along the conduil in opposite directions and with the constant velo-
city a. In fact, pulting « = 4 at -+ constant, or # = — af + constant, makes the
function IF or the function [ constant, and also the values of y, and of v de-
pending on both of these systems of pressures.

We will designate by « direct blow » the one dependent on the first of
these systems of pressures, and which, due to a variation of the seclion of
the orifice, is propagated from the orifice toward the reservoir in the direction
of positive #’s and we will designate by « counter blow » the waterhammer
which, due to the reaction of the reservoir, is propagated from the reservoir
tovard the orifice in the dircction of negative 2’s, .

2. The Waterhammer of the direct blow.

If the conduit is indefinitely long, in other words if the reservoir is indefi-
nitely distant, there cannot occur, at no point of the conduit, a reflected wave,
and the conditions of the direct blow will be always fulfilled.

If, however, the conduit has a finite length L, the waterhammer of the
direct blow, at any section of abeissa #, will have only a limited duration of
the time 2 —~.

(4]
In the case of the direct blow equation (V) reduces to

X
1 =ya+F(t—E)

u:uu-—-—il’(!—i)

(VI)

i a,
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3. Walerhammer of the counter blow.

In a conduit of the finite length L, supposed to be horizontal and fed by
a reservoir of constant pressure y,, at any section of abeissa # and beginning
with the time

the equations of the variable motion will become.

y=y,+F+{
u:un—i{F—f)

1

because, beginning at that instant, there will co-exist at « both the direct and
the reflected wave, The functions F (t-%—) and f (f + _;.:_) ar¢ unknown.
It is possible, however, to eliminate one of these functions by considering that
at the section » = L (at the reservoir), the pressure y must be constant and
equal to y, whatever the value of &, We then evidently obtain

i (f + .{EI) = F (t - -I;), (V1)

a
or in particular, putting

T L.
T A e
1 i)

where {,, designates any instant of the phase of the counter blow at section z,
provided that

equation (VII) becomes

i l

which is the characteristic equation of the phase of the counter blow.
The first of the equations (V)

i : )]
y:wf+F@—E)+f@+EJ

evidently has a very clear significance; the functions I and f represent travel-
ling pressures which are displaced along the'conduit whith a wvelocity a, the




ABSTRACT OF MR. ALLIEVI'S PAPER X1

first in the positive and the other in the ncgalive direction of the abeissa.
Therelore, the walerhammer, al any seclion of abeissa @ and al any time £, is
given by.

ﬁy=y—yn:F(i-—-§) +;‘(t+.f’?).

This equation is therefore the mathematical expression of the following fact:

the waterhammer al any section and at any time is equal to the sum of the

travelling pressures I and / which are displaced in lhe two directions with

the constant velocily ¢, and without mutually interfering with each other.
The second of the formulas (V),

v=0p,—L(F—)

)

at first glance, does nol seem to be susceptible to such a simple inl-erpretalinnl.
Allievi, however, remarks, that this second equation can be arrived at by
means ol elementary methods, if it is admitted, as shown by expericnce, that
the law of propagation of pressures al constant velocity expressed by the first
equation, (V), is true. It is sufficient, lo this effect, to apply the fundamental
principles of dynamics to an element of the liquid column of thickness dw — a d.
The second relation of (V) can be deduced, wilthout difficulty, from the equa-
tion ol the motion of this element,

Al any instant £ in the horizontal conduit, a fluid element of abcissa
and of thickness da is subjecled to the action of the travelling pressures F
and f; the dillerence of these pressures on te two faces of the element is
evidently,

dF — df,

so that the equation of motion of the element can be written

% wr'dy ;{; = o (dF — df) nr?
or pulting
dx = a ' di

2 do—=dF—df.
g

Integrating this equation between the limils, § — (, the beginning of the
perturbed regime, for which '

v=p,and F=f—=o,

and an instant /, ol the phase of the counter blow, we gel
g :
V=uv, — = (F —
o a ( ]‘)J

which is the second equation of the system (Ve
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