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SYNOPSIS

This report traces the theoretical development of the phenomenon
of water-hammer from the days of the natural scientists of the

seventeenth century to the middle of the twentieth century.



INTRODUCTION

‘Water-hammer is the phenomenon of the transmission of pressure
and velocity surges along a pipe or conduit when a change in either
the velocity or the pressure is imposed at some section in the pipe
or at its ends. This change may be imposed by some mechanical device
such as a valve or by a variation in the performance of some
hydraulic machinery attached to (the pipe, such as a pump or hydraulic
turbine.

The inception of study, and its pur;uit, in any field of
scientific thought is dependent on several factors. An essential one
is the recognition of the physical facts which are involved, i.e. of
their existence. Another factor is the need for a solution of the
problems which arise from these physical facts. A third factor is
curiosity aroused regarding their cause, their significance, and
their impact on other fields. A fourth factor, which is necessary
in the development of any study, is the ability to cope with the
problem and its solution. This last involves ability to recognize
the signific aice and inter-dependence of the physical phenomena and
on the mental tools available for their study, (such as mathematical,
physical, and logical).

The study of \Jater-hamner, due to its relatively late arrival
on the scene, gives us a good opportunity to note how these factors
have played their part in the recognition and development of the
subject.

In the .larger field of hydraulics, early development was based
on problems of transportation of water, and on the measurement of

flow for irrigation and for domestic use in the centres of population.
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This involved devices for pumping, for delivery along canals and
conduits, and for the measurement of quantities used by individuals.
The theory and designs had to do with hydrostatic pressures, friction
losses, and discharge coefficients, most of which could be handled by
experimental studies. There was no need to consider cases of unsteady
flow, either in open channels or in closed pipes and conduits. The
action of waves on shore lines, in bays and ports, and along canals,
was the only problem similar to water-hammer known in early times, and
the mathematical and physical knowledge in those days was unable to
cope with this problem except by construction of breakwaters for
protection of harbours and shipping. This branch of hydraulics, now
designated as coastal engineering, which deals with tidal and surface
waves, has become a very important field, particularly in this 20th

century.

CHAPTER I  EARLY STUDIES UP TO 1700 A.D.

The earliest study of the subject of water-hammer was made by

(5)

Euler in 1775 when he attempted a solution of the phenomenon of
flow of blood through the arteries. The solution eluded him,
although it was almost within his grasp, as the mathematical and
physical tools were at his command. It is instructive and appropriate
that we show how these mathematical and physical tools were
developed.

Analagous fields which occupied the attention of mathematicians
and physicists (natural scientists) in early times, and whose study

became the foundation on which the theory of water-hammer is based,

were -
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(1) the propagation of waves on shallow water;
(2) the propagation of sound waves in air;
(3) the flow of blood in the arteries.

None of these problems held much hope of detailed solution
until the development of the calculus and the solution of partial
differential equations. This is because they involve rates of change
of pressurc and velocity in elastic media. It was necessary for the
mathematicians to develop a tool for studying rates of change and
for the physicists to develop a theorylof elasticity which would
co-ordinate these rates of change.

Almost all of the earlier students were equally facile in
mathematics and science, and it is difficult to separate the work
done into these two distinct disciplines. Developments will be shown
in chronological order and this chapter will cover the work done up

to the time of Newton and Leibniz.

Descartes, Réné (1596-1650).

He opened the new field of Analytic Geometry by inventing
cartesian co-ordinates. This made it possible to put Geometry on an
analytical (algebraic) basis, and led to the development of
Trigonometry and Analytical Geometry. All of our later development
is indebted to Descartes for this powerful tool which is the

foundation of mathematical analysis.

Cavalieri, B. (1598-1647)

His idea of "indivisibles'" (developed about 1635) which was
probably suggested to him by much earlier work by the Athenian
Xenocrates, was that there are indivisible (Geometric) quantities

called points and the sum of an infinite number of points constitute
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a line. Then the sum of an infinite number of lines gives a surface
and the sum of an infinite number of surfaces gives a volume. His
studies lacked clarity and were not satisfactory to a scientific
mind. - However, he undoubtedly stimulated Leibniz and other

contemporaries in the development of the integral calculus.

Barrow, Isaac (1630-1677).

In 1663 he used what is now called the differential triangle
(Fig. 1) and thus introduced the idea of limits

in a geometric sense. As Ax and with it Ay

-
B

ay

AT, and this is the rate of change of y with A AX X

are continuously reduced, the chord AB

approaches the tangent AT. The ratio Ay/ Ax //
approaches as a limit the slope of the tangent //

respect to x at the point A on the curve. F‘I G /
He commmicated this study to Newton. It is also
known that Leibniz corresponded with him and knew

of this work.

Newton, Isaac (1642-1727).

There are two of Newton's studies which are particularly
significant for us. One of these is his theory of fluxions, the
basis of the calculus.

In his earlier work he considered infinitely small quantities,
similar to Cavalieri, but he discarded this as he recognized it was
not mathematically sound. In 1664-1666 he developed his theory of
"fluxions'". This was based at first on the time rate of movement
of a point (i.e. the velocity), "flowing' along a curve. Thus his

study had a geometric and physical basis. He studied the fluxions
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of various functions, and the ratio of these fluxions. Thus the
ratio of the fluxion of y with respect to the fluxion of x was

the fluxion of y with respect to x. In our notation this is

written _dl_ - ax a’y

dt -~ dt ~— dx

In Newton's "'dot'" notation, where y signifies differentiation with

respect to time, the fluxion of y (with respect to time), this
ratio is written ,Y - X

Newton later studied the inverse operation on functions, their
integration or quadrature. Reference 1 dealing with these studies
is in Vol. 1, pp. 145-244, 400-446.

The second of Newton's studies significant for us is his
study of the propagation of sound in air. This is given in his
Principia (2) published in 1687. All of Newton's work in this
monumental effort is based on synthetic geometry. In Book I he
deals with the general motion of bodies subjected to various types of
forces and in particular to the motion of the planets. In Book II
he considers the motion of bodies in resisting media (i.e. the effect
of friction). Here are also the studies of the oscillating pendulum,
the propagation of waves in canals and the propagation of sound
waves in the air. In Book III he gives his ''System of the World"
which is based on Book I and includes a more systematic and complete
statement of the motion of heavenly bodies.

It is instructive to study Newton's development of the theory
of propagation of water waves in canals and of sound waves in air.
First (Book I Prop 52) he studied the oscillation of a pendulum,

(Fig. 2). The pendulum cord OP is restricted by the two half-
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cyclords OP and OR, each of length
L, and the pendulum bob oscillates
along the cyloid PQSR. The force

of attraction is toward the centre

C of the circle PBR. He found that
the force causing acceleration along
the path PQSR is proportional to the

distance along the path from 8.

This gives us simple harmonic motion
along the path and the pendulum

motion can be related to the motion

of a particle in a circular path
Qith constant angular velocity
(ie. the motion of the projection
of this particle on a diameter of
the circle).

He extended his study to the case where the circle PBR has an
infinite radius, so that the centripetal forces become parallel, and
deduced the formula for the period of oscillation of a simple

pendulum at the earth's surface

T=2n/L/fg .

To find the period of waves in a canal (Book II Prop. 44,45,46)
he first showed that the period of oscillation of a liquid in a U-
tube of total length L was equal to that of a pendulum of length
L/2. 'Then he used the analogy (erroneously, as Lagrange later pointed

out) that the distance from crest to trough on a water wave
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corresponded to the length of liquid in a U-tube, the accelerating
force in each case acting on these two corresponding lengths of
liquid. Hence the period of a wave in a canal is T7C L/g 3
where L 1is the wave length. This gives, erroneously, a wave
velocity —7'? L/g . For the case of sound waves in air,
Newton (Book II Prop. 47 to 50) compared them to the oscillation of
a simple pendulum. He assumed the density to be inversely
proportional to the pressure. If h 1is the height of an air
column of uniform density equal to that at the earth's surface which
would give a pressure at its base equal to the barometric pressure
(e.g. 30 inches of mercury), he deduced that the time taken for a
pressure wave to travel a distance equal to the circumference of a
circle of radius h (i.e. to travel a distance 27Ch) was equal
to the period of a pendulum of length h. Hence the wave velocity
is J 5/7 .

Using a barometric pressure of 30'" Hg. he finds h = 29725 feet
and the velocity of sound in air is 979 ft/sec. This is the same
result obtained later by Lagrange. It is interesting to note how
Newton and Lagrange tried to reconcile this theoretical value with
the experimental values of approximately 1142 ft/sec. Lagrange said
the diffcrence was due to experimental error. Newton, however, had
confidence in the experimental value. He gave two reasons for
the error in the theoretical value.

(1) The "crassitude" of the solid particles of air.

These, being approximately of the same density as water
or salt must be distant from each other approximately

10 diameters, since water is 870 times heavier than
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air. The sound (pressure surge) travels instantaneously
through the solid particles and all of the time is
consumed in the movement from particle to particle.

This will give a corrected velocity of

979 x 10/9 = 1088 ft/sec.

(2) The presence of ''vapours''. These latter are of
another '"spring'' or type than the air particles and
have a different tone and will hardly partake of
the motion of the true air in which the sound is
propagated. Thus if the vapours remain unmoved,
the propagation will be faster through the true
air. Taking the rati70 of air to vapours as 10 to 1,
the velocity, which depends on the square root of

infia
the density, will be increased to 1088 ”/‘O
= 1142 ft/sec.

Leibniz, Wilhelm (1646-1716)

He established his version of the calculus independently of
Newton, although we know that he had access to Newton's method in
1673 when he visited London. By 1675 he had established his
notation d for the differential and f for the summation or
integral. This latter symbol is related to the '"summa'' of the
"indivisibles" of Cavalieri. In 1684 and 1686 he published his
method. His symbols were later adopted by everyone, including the
English mathematicians. Thus he wrote

Jydy = %Y
Leibniz appears to have developed the integral calculus first,

and thought of the differential as the inverse of the integral.
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This is the reverse of Newton's thinking, who concerned himself
first with differentials and later with the inverse operation of

integration or quadrature.

CHAPTER II DEVELOPMENT IN THE 18th CENTURY

Bernoulli, Jean I (1667-1748)

He was one of the greatest mathematicians of his time and a

pioneer in putting the integral calculus on a sound foundation.

Taylor, Brooks (1685-1731)

Worked on infinite series and derived Taylor's Series in 1712,

one of our fundamental theorems.

Maclaurin, Colin (1698-1746)

Published his series in 1742. This is a particular case of
Taylor's Series. It was proved much earlier in 1730 by

James Stirling.

Euler, Leonhard (1707-1783)

He was the pioneer in developing a detailed theory of the
propagation of sound waves in air and of elastic waves travelling
along a plucked cord.

In his article on the propagation of sound (3), he states first
that he would not have been led to his solution if he had not read
Lagrange's analysis of the problem (4) .

Euler found Lagrange's treatment prodigiously difficult to
follow. However, Euler's analysis is quite different from Lagrange's.

He uses discontinuous functions for the first time on record, as he

had already done in his study of the vibrating cord, maintaining
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that the very nature of the sudden disturbances which caused the
waves required the use of discontinuous functions. Lagrange , on the
other hand, used only continuous functions, assuming a system of
finite particles of air rather than a continuous medium. He solved
the case of the vibrating cord similarly by assuming a set of finite
masses. Both Lagrange and D'Alembert rejected the? validity of using
discontinuous functions. The controversy persistéd even though
liuler demonstrated that his solutions agreed with the others, where
continuous functions could be used. In these introductory remarks
Euler expresses the hope that "in time" these conservative Geometers
will accept these new functions.

Euler assumed a disturbance within a limited length of a
horizontal air colum in a cylindrical tube and the transmission of
this disturbance in both directions. This disturbance is a
discontinuous function, being zero on each side and of any desired
form initially, Assuming that the density varies inversely as the
pressure , he develops the partial differential equation for

the wave propagation
32)_: — 2 32 I
) f —— a xz , ° ) - - ) ° - -
2
where a” = gh,

Here x 1is the equilibrium position of the particle,
y its displacement at time t, and h is the height of a colum
of air of constant density which exerts atmospheric pressure at its

base. [uler gave the functional solution of this equation

y =F(x+at) +f(x-at), - I
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the velocity of propagation being a = fg_h, the same as obtained
by Newton and Lagrange.

It is not difficult to show that this solution agrees with
present one g = J K_q/ Y . We note that the atmospheric
pressure P is equal to Y h. Then, using the assumption PV =

constant, where V is the volume of a given mass, we obtain

PAV +VdP =0, or c/P/P::—z/V/V.

But we define the modulus K by dP/K :_dV/V.

lience we may substitute P = K giving
f7/):: 5]/3/¥ = f(g/lxl

Euler proceeded to discuss the significance of these functions
F and f, which represent waves travelling up and down the pipe with
velocity a; and he solves for cases where -

(1) the initial displacement, and

(2) the initial velocity,
are given. lle noted the difference between this theoretical velocity
of sound and the experimental value and surmised that this was due to

dy \? .
the extra factor, /+( FxL) , which was in his general equation,
but which he had considered negligible. As he said, this would not
be negligible for strong disturbances.

Euler, in conclusion, gives priority credit to Lagrange for the
development of the partial differential equation I and its
functional solution II, as applied to continuous functions. Later,
the use of these functional expressions was studied extensively by

Gaspard Monge (1746-1818) (8).
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For our purpose this is a sufficient summary of Euler's
text,but the reader will be rewarded by a more detailed study.

In 1775, Euler wrote a second article (5) on the flow of
blood through the arteries but did not succeed in obtaining any
satisfactory solution. (Note that Harvey, 1578-1657, discovered
the circulation of the blood.)

Euler's concluding remarks, made in a religious vein, were:

"In explaining, then, the motion of the blood, we run

into the same unsuperable difficulties which prevent

us {rom examining more accurately all the things

that are clearly works of the Creator ...... since

not even the greatest human genius is able to

understand and explain the true structure of the

most insignificant worm'.

Euler published his works on analysis 1748-1770 and Hankel pays
him the tribute that "he freed the analytic calculus from all
geometric bonds, thus establishing analysis as an independent science'.

To avoid confusion, the research results of all who followed
Euler will be expressed in a common nomenclature as given in the

table of notation wherever this is possible.

Lagrange, Joseph, L. (1736-1813)

He succeeded Euler in 1766 as mathematical director in the
Berlin Academy, which was a flourishing institution under the
patronage of Frederick the Great. He obtained solutions for the
movement of incompressible fluids and compressible fluids in his
text Mecanique Analytique (6).

(1) For the former he used the velocity potential @ and his
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method is rather cumbersome, being based on approximations of
Taylor's expansion @ = @'+ Zz@g" + Zzﬂ"' etc.

In the case of waves in a canal, assumed shallow enough so
that the vertical dimension Z may be neglected and vertical planes
in the medium remain vertical, he develops the relation

3¢’
377

32¢/ 32¢/
dy?2

::gh S ()
where h 1is the canal depth (p. 334). Reducing this to a single
space dimension, he finds the velocity of the wave a = ,/gT
(2) For compressible fluids, such as air, (p. 339), he adds a
term in his fundamental relations for incompressible fluids, to
allow for the compressibility, and deduces the same solution as I(a)
above. Here h is the pressure head on the air mass, as defined
earlier by Newton and Euler. To solve this, he reduces again to
one space dimension and obtains the functional solution II.
Lagrange in a similar manner studied vibrating cords (Ref. 6,

Vol. I pp. 382-422).

Note on the solution of waves in open channels.

Let us now summarize the solutions for waves in open channels,
using for reference Coulson's condensed text on waves (7).

(1) Surface waves, or waves in relatively deep water.
Here a general treatment is necessary, since vertical components of
the variables cannot be neglected, and the disturbance does not
cxtend far below the surface. To this group belong -

(a) waves promoted by wind,

(b) waves of short length for which surface tension

becomes a significant factor.
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(a) neglecting surface tension, the velocity of propagation a

is given by

a'= 2 fanh ZEh

where >\ is the wave length and h the depth of water.
At the two limits of the quantity 21th/ A we find
(i) For very deep water, as h —o0 2 az__,» ‘;—:’t— -
(ii) For very shallow water, as h — 0> a* —s 5/7 .

This last is the case considered by Newton and Lagrange.

(b) Allowing for surface tension, we have

az.—. [5’\ + ZET] ‘f'«',!n"\‘;"—ﬁr}1 >

21 AP
where T is the surface tension and f  the mass density.

As the wave length >\ decreases, the surface tension becomes

more important.

Monge, Gaspard.

In 1789 outlined his graphical integration of partial
(8)

differential equations Later he published in the same Journal
his "Memoire sur 1'integration graphique des e/quations aux derivees
partielles". This appeared in Vol. 23 new series, and he used the
term "method of characteristics'. Monge was the founder of the

Ecole Polytechnique.

Laplace, Pierre, S. (1749-1827)

He was another great mathematician and scientist, a contemporary
of Lagrange. lle developed the Laplace equation, the criterion of
equilibrium of homogeneous fluids (Ref. 9, Vol. I, p. 206)

2 _ bl bz 32 g
Hes [bx2+ By2+ bzﬂ]qS B
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About 1808 he explained the difference between the experimental
and the theoretical values of the velocity of sound in air. The
theoretical value, based on Boyle's law (see Newton, Euler, Lagrange)
was g = P/ P . He stated that this law did not apply since the
temperature was not constant under varying pressure. For adiabatic

_Ce P

conditions 4 = Y where C, and (, are the specific
heats. Using CP/CV:I'M,this increases the theoretical velocity
by about 20%.

9)

Laplace's work included celestial mechanics and he used
analytical methods throughout in his physical studies, as compared

with Newton, who used Synthetic Geometry in his "Principia'.

Cauchy, A.L. (1789-1857)

He is of interest because he put the differential on a sound
analytical basis (10) , not dependent on a geometric relationship
between chords and tangents. He expressed the infinitesimal 1 as
a product o h, where h is an arbitrarily chosen finite quantity

and  another infinitesimal. Then

L f(x+ah) -f(x) _ 7
o(.—rrno oh = 1 (X)’

by definition of the derivative.

Hence

Lim  £xah)=£) _ p £(x).
o

nL—>(0)

If we denote the arbitrary quantity h by dx, and call it
the differential of x, then the left hand side above may be denoted

by dy the differential of y, so that

dy = Lim £Oeah)f00 - 47 (x)=f'(x)dx =y dx.




- 16 -

By the turn of the century, the mathematical tools were well
developed, but the physical tools, dealing with the elastic properties
of materials, were still lacking somewhat for the requirement of
rigorous and detailed analysis.

In review we note that the work of Newton, Leibniz and their
contemporaries gave rise to a great surge in mathematical and
scientific development. In the latter half of the 18th century
Western Liurope was a closely knit community of savants. National
Institutes, Academies and Schools flourished in Italy, France,
Austria and Germany, as well as in England and Russia. The teaching
and writing of such great men as the Bernoullis, D'Alembert, Lagrange,
Laplace, Legendre and Euler became well known everywhere. Physical
and mathematical concepts could now be expressed in the form of
integral equations and ordinary and partial differential equations.
Later came the complex variable and the calculus of variations.

[t is difficult for us, at the present time, to be certain as
to who initiated some of the new ideas in the 19th century. We can
only record the results of our research, indicating the general

development.

CHAPTER IIT1 DEVELOPMENT IN THE 19th CENTURY

Young, Dr. Thomas

In 1808 he made some hydraulic studies,in preparation for the

(11). He studied

Croonian lecture, on the {low of the blood stream
friction losses, including losses in bends, as well as the propagation
of the pressure wave. lle discussed DuBuat's text,Principles of

Hydraulics, Vol. 11, 1786. His physical arguments appear unsound
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and unfortunately he did not discuss the subject further in his
lecture or subsequently. Much experimental work on air and water
surges in pipes was carried on in the first half of the century,
notably Wertheim (12) in 1848. However, no satisfactory theory was

developed for the propagation of the pressure wave in water pipes.

llclmholtz, llermann von (1821-1894)

lle was editor for Pogg (Annalen der Physik und Chimie) and had
wide interests. e appears to have been the first to explain
(in 1848) the fact that the velocity of wave propagation in a pipe
containing water was less than the velocity in water not confined.
He explained, correctly, that this was due to the elasticity of the
pipe walls. Wertheim, in the same year, offered the same explanation

but made no theoretical study.

I{unmuu1!lL

(13)

In 1800 he published a paper at Gottingen on sound waves

and later in 1869 he published his text on Partial Differential

(14). He refers to the earlier work by Euler in 1759.

Equations
Riemann developed and applied the three dimensional equation
of motion and its simplified one dimensional form, in several fields,
notably for vibrating strings and sound waves, as do others before
him. llowever, he used neater definitions and expressions for the

clastic properties of the media. Thus for air he expressed the

relations between pressure and density by the equations
()/A:/+S; P_—_gb(p),

licre £\ is the density in the equilibrium state, P 1is the variable

density, P the pressure and S the compression ratio.
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liis general equation was

s 2 [ 2* 2 ¥
a0z~ “ [axz* oy? * bz2]s'

His particular studies are based on the functional solution for a

single space dimension, II.

Weber, Wilhelm studied the theory of flow of an incompressible fluid
(15)

in an elastic pipe He had already made some experiments in
1850 116) to find the velocity of propagation. Using the two

lincar rclations for elasticity and acceleration which he developed,

P

oV 2 or . oV _ /
ST FI W ST Pk
he obtained the second order equation ‘
d’r r 2°r

¥tz 2kp  dx*
Here k=HdL, his elastic modulus; V is the velocity, r the

radius and P the pressure. He deduced the velocity of propagation

P
zkp
directly to the variations of pressure and radius. This has been

a= Thus he related the elasticity of the pipe walls

found necessary in the recent study of surges in rubber and plastic

pipes.

daF

r

Using our notation

dFP -
Ke = ﬂ“A B

(NIES

his modulus k = ,s0 that his velocity of propagation becomes

-
2Kp
- _ [ Kp9g
a = KP/P — Y b4
which agrees with present-day theory.
His tests on a rubber hose 16.5 mm radius, which expanded

2.75 mm in radius under a pressure of 3500 mm head, gave an
cxperimental value of the velocity of propagation a = 11255 mm/sec,

wherecas the theoretical value of wave propagation velocity is
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10033 mm/sec. He charges the discrepancy to inaccuracy of
measurement of the strain and of the period. It is certainly not
due to neglecting the elasticity of the water.

Mention should be made of other experimenters, such as
Wertheim (12), Kundt (7) and Dvorak (18) ;

Weber appears to have been the first to develop the two first
order equations for the elasticity of the pipe walls and the
acceleration of the water colum. We may designate these the
continuity and dynamic equations respectively. These are the basis
of all our theoretical studies involving the magnitudes of the
pressure and velocity in water-hammer.

In the past, investigators were concerned only with the
velocity of propagation (as was Weber himself) and so the mathematics
developed was based on the second order equation in one independent
variable, which led directly to the velocity of propagation. The
two first order equations were lost in obtaining this second order
cquation. Weber happened to discover these two first order
equations because of his detailed study of the elasticity of the
pipe walls. The two main fields of study of wave propagation in
pipes were still quite distinct, one with an elastic medium (air) in
an in-elastic pipe, and the other with an in-elastic medium (water)
in an elastic pipe (rubber).

Marey, Dr. published in 1875 an account of his experimental work on

(19) . He conducted

the propagation of water (and mercury) waves
medical research on the flow of blood in small animals (turtles,
frogs) and to attempt to develop a theory for the propagation of

pulse beats he set up experiments in his hydraulic laboratory and
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published accounts of his research over a period of several years.
He had a pipe line of rubber with six short branches spaced
evenly along its length and leading to his six chronographs. These
recorded continuously the pressure oscillations caused by the
operation of a piston at one end. This piston could apply an
impulsive injection of fluid or, alternatively, it could work in
reverse. Both the amount of injection and the rate could be varied,
with either water or mercury. His laboratory technique was excellent.
In fact he criticised the work of earlier experimenters (Newton,
Weber, Poisson, Biot) saying that their methods and instruments
were imperfect and their results sometimes contradictory.
lic was able to formulate several general conclusions, e.g.
(1) the wave velocity is-indepenqent of the impulsive blows >
(2) the wave velocity for mercury is approximately three
times that for water ;
(3) the wave velocity is proportional to the elastic
force of the tube ;
(4) the reflected wave from the closed end has the
same velocity.
lle did not have the mathematical knowledge to develop any
analytical results, but his contemporarv Resal (editor of the
Journal de Math. pures et appliqudes) verified his experimental

results by developing his theory of propagation.

Resal, ll. 1in his article in the Journal (20) develops the continuity
and acceleration equations and from these the second order wave
equations, assuming an incompressible fluid and an elastic pipe.

llence he finds the wave velocity identical with the work of Weber (15),
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but expressed in terms of Young's modulus, i.e. 4 = _%%i.

Rayleigh, J.W.S., Lord (1842-1919)

published his text in 1877 on the Theory of Sound (21), which
brought up to date the result of all the studies of the past, and

of his own research.

Korteweg, D.J. was the first to solve for the wave velocity

considering the elasticity of both the pipe wall and the fluid (22).
Those before him considered either one or the other of the two
inelastic or incompressible. He also took into account the radial
acceleration of the pipe walls in his general equation. His
development is very close to present day analysis, both in thought
and procedure. llowever, he was concerned only with the velocity of
propagation and not with the transient pressure velocity relationship.
lic neglected -

(1) the effect of friction, since, like all other writers,
he dealt with pipe_s— in which only the vibrations due to
sound and wave propagation existed, and no study made
of the effect of change in flow;

(2) 1longitudinal stresses due to bending of the pipe
walls, as he considered the wave length considerably
large with respect to the pipe diameter;

(3) wvariation in the modulus of clasticity with pressure.

Ilis basic equations were -

dFf Al
K +- B_X + % :07 for continuity;
' g P . Skl oF
= e e or acceleration o
212 Y ax the fluid;
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2
2 Y‘ - - l:dP — Eé dr| for radial acceleration;
e by ’

Korteweg stated the radial acceleration could be neglected due to the
low inertia of the pipe walls. (This has been verified later (58).)
Hence he found from the last equation

dP = E—f_’-dr‘ for the elastic equation of the
r pipe walls.

From these equations he obtained e
% u _ ¥ [, 2r] du
ey == == X >
Ix2 g | KT bE| 2%

whence the velocity of propagation

This is identical with present day theory. Korteweg stated

that, for Wertheim, Kundt and Dvorak, the correction factor for
2Kr
bE

He also verified that Resal's and Weber's solution agreed with his if

the effect of the elastic walls was J | +

the fluid elasticity factor I—'<. was neglected.
We note that Korteweg's first equation is our acceleration
cquation, but he did not develop its interlocking equation by

differentiating his second cquation with respect to time.

-
Lamb, llorace 1in 1878 published his text book 'Motion of Fluids' (‘“’),

which is similar to that of Lord Rayleigh. Later in 1910 he
published his "Theory of Sound" which is a revision of the earlier

work.

Michaud, Jules in 1878 published an article (24) which to the author's

knowledge is the first to deal with the problem of water-hammer.
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He does not develop or use any of the theoretical solutions for the
wave propagation (at that time no relationship of the pressure and
velocity surges had been discovered) but he studied extensively the
design and use of air-chambers and safety valves in the pipe lines
to ameliorate the effects of sudden and gradual closures of gates

and valves.

Gromeka, V.I.

In May 1883 he presented a paper (25)

on water-hammer surges
and seems to be the first to consider the effect of friction, apart
from the experiments of Marey and the latter's general conclusions.
Gromeka criticised much of the earlier work, mainly because
it neglected friction. However, there are several assumptions of
his which are open to criticism also. He based his study first on
the assumption that the pipe walls are thin and act as a cylindrical
membranc. Then he applied membrane theory to determine its
oscillations. He assumed the liquid is incompressible and also that
the friction force is proportional to the velocity (i.e. the
velocities are low and flow is laminar). In conclusion he stated
that the terms dependent on friction made the equations too difficult
to solve and he limited himself to the effect of the inertia of the
pipe walls. lle is throughout thinking of two waves being propagated,
onc in the pipe walls and the other, dependent on the former, in the
fMuid, and that there must be equilibrium between these "inner and
outer pulses'. When he reduced his formula to the case of negligible
pipe inertia he obtained Resal's solution.

During the years 1885 to 1899 several engineers in the

United States undertook experiments in water-hammer, with and without
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air chambers, and some attempted to develop a theoretical relation-

ship between the velocity reduction and the corresponding pressure

rise. There was little success. In many cases this was due to the

shortness of the pipe lines and the slow closure of the valves.
Three of the most notable of these engineers were -

(1) Weston, E.B. (26)

at Providence, R.I.
(2) Church, I.P. (27,28) at Cornell, and
(3) Carpenter, R.C. (29) at Cornell, who worked with
two graduate students.
In his discussion, Carpenter attempted a theory based on the
elasticity of both the water and the pipe walls. He also used

relatively short pipes 375 feet long, both with and without air

chambers.

Frizell, J.P.

lie presented a paper (39) in October 1897 which gave the first
known analytical treatment of the pressure and velocity surges due to
water-hammer. This paper was the result of his studies as consulting
engineer for the Hydro-Electric development at Ogd!en, Utah, where
they were concerned with the effect of a 20% reduction of the power
demand on the pressure surges in the penstock 31,000 feet in length.
These surges were found to interfere with the speed regulation of
the turbines (see also Church, Ref. 27).

Frizell developed the fundamental formulaec for the velocity
of the shock wave and for the intensity of pressure due to an
instantaneous reduction of the flow. It is remarkable that he was

able to do this, apparently without knowledge of the studies which

had been made in Europe, resulting in the equation for the wave
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propagation I and its functional solution II.

Ilis treatment is worth our study. He considered a piston
being pushed along a pipe. As it moved it compressed the fluid
and also increased the cross-sectional area of the pipe in its

neighbourhood. The piston

must continue to move in order A C
-

to maintain the pressure, 4 L .

and more and more of the fluid B D

and of the pipe length will
become strained. F/G 3,

Using our notation, and referring to Fig. 3, let the piston
move a distance 4 1in a time t, and let the fluid between
sections AB and CD,over a length L, be compressed during this time.
Then due to the elastic properties of the water and pipe walls, he

found that
[ I 2r | I

The velocity of the piston is therefore

L _LPl2r , 1
V="%="7% Eb+KJ

Frizell now considers the ratio of this velocity, (which is
the velocity of the whole compressed colum ABCD and is the result
of the force applied to the piston), to the velocity gt which the
colum would have if acted on byv gravity, stating that the ratio of
these velocities is equal to the ratio of the forces applied.

We interject here the remark that, alternatively, he could

have used the equation for impulse equal to the change in momentum.
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The resulting wave velocity is
iy . i;[Z_" I

a‘r"/r' F5 T x| °

which is identical with that obtained by Korteweg and others.

To find the pressure rise due to a sudden gate closure, with
a corresponding velocity rejection of V in the colum, he
considered the volum of Fig. 3 to be moving to the left and stopped
by the piston AB. This led to the solution,obtained by considering

the volumetric compression ,

e o il 20 . L
P=g - Eb+K]

If we express the bracketed expression in terms of the
wave velocity a, this becomes P= [%L] V 5
which is identical with the solutions of later investigators,

This result could have been obtained directly from his
original study relating V to L, P and t, or, more elegantly
perhaps, he could have equated the impulse of the force on the gate

to the change in momentum of the mass, obtaining

= ALY —[a¥
PA‘I' = g V, whence P——[j ;'V

Without doubt Frizell understood the action of water-hammer
thoroughly. His analysis is fundamentally the same as that of
Korteweg and others, including his contemporaries Joukowski and
Allievi. Frizell did not use the relationship between water-hammer
and sound waves, as did Joukowski. He did, however, state that the
wave velocity, as the pipe modulus E —— 0O 3

was that of sound in unrestricted water.
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His work was criticised and not accepted by his American
contemporaries. One of them ''saw no reason why this coincidence
(with the velocity of sound)" should reassure Frizell regarding the
validity of his results.

Frizell also considered the effects of branch lines and
wave reflection and discussed cases of slow closure, explaining why
earlier studies and experiments had failed to develop theories
because the gate closure times were greater than the period.
lle discussed the effect of successive waves on speed regulation and
suggested tests to check his theory.

It is djfficult to realize at this present time why Frizell's
work was not appreciated and why he has not been given a place of
distinction in the development of the subject. One reason is perhaps

the lack of commumnication across the Atlantic.

Joukowski, N.

During the summer of 1897 and the following winter, at almost
identically the same time as Frizell's studies, Joukowski made
extensive experiments in Moscow in his capacity as consulting
engineer for the municipal water-works. As a result of these tests
and of his theoretical studies he published a report (1) in the
spring of 1898 on the basic theory of water-hammer.

This is a classic piece of work as it verifies the theoretical
relations between the pressure and velocity changes during the surges
with experimental tests. He tested three loops of cast-iron pipe,
the flow being stopped almost instantaneously. These were -

(1) 25,000 feet of 2'" diameter;

(2) 1,000 feet of 4" diameter;
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(3) 1,000 feet of 6' diameter.

Unfortunately, the author has at hand only the translation of
this paper, so that there may be important and illuminating details
in the original text of which he is unaware.

Joukowski was very well acquainted with the work that had
already been done, as he mentions the earlier work of Marey, Gromeka
and Korteweg, as well as the experiments of the engineers in the
U.S., including the most recent paper by Frizell (i.e. according to
the translation of 1904).

lle developed independently the formula for the wave velocity,
taking into consideration the elasticity of both the water and the
pipe walls. His formula agrees identically with those of Korteweg
and Frizell. He also developed the relation between the velocity and
pressure surges, using two methods, one the conservation of energy
and the other the continuity condition. The latter is given in the
translation and agrees identically with Frizell's formula.

In his experimental work he used Marey's chronograph to
measure the time to .01 second and Crosby Indicators to record the
pressures. These two sets of instruments were correlated by means of
a pendulum which made an electric contact every half second.

Joukowski does not use the functional solution II of the
wave equation. llowever, he shows very clearly how the pressure wave
travels along the pipe and the nature of the reflections at the
ends. Thus for a sudden gate closure, he shows that the wave of
positive pressure and zero velocity reaches the upper (reservoir)
end at time % , and for the return wave, the pressure has returned

to normal (that obtaining at the reservoir) and the velocity becomes
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full negative, i.e. flow is back into the reservoir. This and

following surges are shown in Fig. 4.

34% L V203P=+; > Pp=p he t V=0; P=—; ﬁ
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On the reservoir side of the surge front the pressures are
normal, as imposed by the reservoir, and the velocities alternate
between positive and negative as the surge is reflected. On the
gate side of the surge front the velocities are zero as imposed by
the gate, and the pressures alternate between positive and negative
as the surge is reflected. A complete cycle of surges occurs in two
periods, i.e. in a time interval of -4—;—‘

Amongst the phenormena Joukowski studied and his conclusions
were:

(a) Passage of the pressure wave into a smaller pipe

with a dead end.

(b) Reflection of the pressure wave from an open end

of a branch pipe.

(c) Variation of the time of closure of the gate or valve,

verifying that pressures are maximum for closing

times t—<—:%.
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(d) Effect of air chambers and of large water chambers
(e.g. a 12" diameter pipe).

(e) Spring safety valves were found very effective and
used later at all important junctions in the water-
works.

(f) Detection of leaks in the system could be detected
by depressions in the pressure diagram and located
by the position of these drops in the chart.

These two consulting engineers, Frizell and Joukowski, developed
the practical theory of pressure surges for two different reasons.
Frizell was concerned with the safety and speed regulation of hydro-
electric plants. Joukowski was concerned with the safety and
operation of municipal water works.

Until their time, investigations of these waves were for
scientific reasons and particulérly concerned with the wave velocity.
From this time on, engineers would be assuming the important role in
developing the science and in ;‘ts practical application.

It would have been a sir;ple step for Weber and his contemporaries
to find the relation between the pressure and velocity surges but they
did not have the practical .wurge. Thus, using Weber's continuity
cquation and his elastic modulus and considering an element of pipe

dx which is traversed by the wave in a time dt we obtain

—_2.dr 4 2,4 2ka 4p_ _ a_
d‘/— r d‘f" dx ra.df'— r (/P_ KP dP)

a
which can be reduced to the form d P =— —Xd V

9

Allievi, L. in 1902 and 1913 published his texts on the general

theory. These were both translated into French and English. In his
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1902 paper he developed the theory from first principles, similar
to Korteweg. However, he obtained a more accurate fundamental

first order equation for the acceleration

WP _ YAV vy 4V

33X 9 b‘i’ X g dr
where he used the total derivative of the velocity with respect to
time.
The continuity equation was unchanged, and it was not until
1937 (51) that this latter equation was expressed with the total

P
dt ot

derivative a_(f = ) ¥ -{-V replacing the partial
Allievi showed that the term V > )\(/ could be dropped because

of its relative unimportance and so obtained the second order equation

}

and its solution in functional form I and II. He introduced two

dimensionless quantities called the characteristics, defined as

_ ave . _al . P _ _Lv |
P‘Zgyo > #= 2L ete 6 9T

Here '0 is half the ratio of the kinetic energy of the water and the
potential energy stored in the water and pipe walls due to the
hydraulic head vy o ? and varies from .1 for high heads and low
velocities to 10 for low heads and high velocities. It is a pipe
flow characteristic.

9 is a gate operation characteristic, T signifying the
equivalent time of gate closure. Thus if 7 is five times the
period -2—;’ , 8=5. Using uniform gate closure in time T, he

obtained the general solution for maximum pressure rise (Halmos p. 30).

= s8] [ w6 0T
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Allievi's work is too monumental to be studied in any detail
here. It covers the whole field of operation, including gradual
gate closures,and his charts and tables are all-embracing. This
fact is perhaps a drawback in the sense that one must become

immersed in the work in order to derive full benefit.

CHAPTER IV DEVELOPMENT IN THE 20th CENTURY UP TO 1925

The study of water-hammer has now assumed a broader world-
wide aspect, carried on mostly by engineers and concerned mainly
with its practical importance. Fields of study have become more
specialized and the methods are more accurate and in greater detail,
with experimental tests and the determination of the hydraulic
characteristics of the various components playing an important role.

It becomes increésingly difficult to consider all the
specialized studies being carried on throughout the world. In this
history we will now limit ourselves to the continued development of
the fundamental ideas and of tht;ir practical use in the various fields,
rather than attempting a history of the work done by all workers in
all specialized fields. Originality of development will be the key
to recognition, although an immense amount of work of extremely high
practical value has been done by outstanding engineers in the various
specialized fields, mich of this work being of a consulting nature

unavailable for publication.

During the first twenty years of the century there was a
great amount of work in applying the theory developed and published

by Joukowski and Allievi to the practical design of water-works and

hydro-electric plants. In Europe the authority was Allievi, due
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mainly to the French translations. In North America Joukowski's
text was the key, partly because Miss Simin's translation was
available in 1904, whereas Halmos' translation of Allievi did not
appear until 1925.

These early designé were in the main concerning penstocks and
surge tanks. For example, Warren, M.M. presented an important paper
on Penstock and Surge Tank Problems (33), which reviewed the
fundamental theory, stating the wave equation and its functional
solution, and giving the formulae for the wave velocity and pressure
rise due to a sudden velocity rejection.

The difficulty encountered at this time was in finding the
pressure rise for slow gate closure (the temrm used here was
"ordinary water-hammer'). Warren assumed that for slow closure
times T, greater than the period E% the maximum pressure surge
occurred just when the first wave returned to the gate and that
thereafter the negative (reflected) surge would cancel any increase
in pressure due to continued gate closure, friction finally causing

the pressure to return to normal. On this assumption he found the

maximum pressure rise for slow closure was

ho_ LV
R~ 9(T -L/a)

The reader should consult Allievi on this point.

Constantinescu, G., in 1920 described his invention of a mechanism
(34)

to transmit mechanical energy by use of the water-hammer wave
The energy involved could be large and the transmission distance

long, for very small displacements of the liquid, (usually an oil).
He gave many examples of the application of this method in various

fields.




- 34 -

The author recalls that during the First World War, British
fighter planes were equipped with the Constantinescu gear, a device
for remote control of the firing of the machine guns. These were
timed to shoot between the propeller blades. This gear was later
superseded by a purely mechanical gear, partly because any mal-
function of the mechanism could (and often did) result in the

propeller blades being shot off near the hub.
(35)

Gibson, N.R. presented a paper in 1920 on pressure surges due
to gradual gate closures, basing his study on Joukowski. In all
these and subsequent studies of surges in simple pipe lines due to
closure of gates at the lower end, the relation between the discharge
and the pressure loss through the partially closed gate has been
based on some assumed law which seems reasonably applicable, e.g.
that at any particular gate position the head loss through the gate
varies as the square of the discharge rate (i.e. the velocity).

In the case of a hydraulié turbine, the whole unit below the control
mechanism is usually assumed to obey this law, the head loss being
the drop in pressure head between the control and the tailrace.
Gibson's treatment is now given in some detail as it will be of use
in later comparisons.

It is assumed that the gate movement is uniform, i.e. that the
(equivalent or hypothetical) area of the gate opening B is reduced
uniformly with time during the time of gate closure T. It is also
assumed that the velocity in the penstock just above the gate is
proportional to the gate area and to the square root of the hcad
loss through the gate. Hence the hcad loss through the gate and
the penstock velocity at any intermediate time t during the first

period are related by the conditions -
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Vt=|]‘%IBoJHo+kf ) l\(’:%(vo-vt);

where B0 is defined by the conditions at time t=0 :-

Vo=Bo/H, 5 ho=0, ana Y H,
are velocity and head loss through the gate at time t .

In the example of the article, successive sudden partial
closures of the gate occurred at times t = (1,2,3,4) units of 1/4 3
i.e. there were four partial closures of the gate during the first
period, and during each succeeding period until closure.

During succeeding periods until complete closure, the first
relation for Vt above is unchanged, and at complete closure, when
t=T, Vt = 0, remaining zero thereafter.

During the second period, where t = (5,6,7,8) ’5/4, the
reflection of the first waves must be allowed for, and the condition
for ht is

ht ok /.,t_,_,. gi(yt—:-vt') - 'zgi(vt-s- %_4> 5 t=56,78 units,
During the third period there are two return waves imposing
their reflections, and hence e
he=he it G0 ~) = 220 Veg) + 22 (g V) ‘
t = 9,10,//,12 unifs.

This procedure continues until closure, after which time
Ve=0; ht——- ht-l+§(vt-/—vt‘) -%(Vé-s"'vtq) L "c | ”

It is seen that solutions involve quadratic equations in ht' N
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Allowing for friction, the quantity fr'(bgz- yéz)
is added to the expression under the square root sign in the Ve
expressions, as this is the value of the regained friction head.

This is the first instance of solutions including non-linear friction.
It was possible at that time only by using arithmetic integration, the
fore-runner of modern computer methods.

For non-uniform gate motion a coefficient Cg may be used,
and this coefficient included in the gate opening parameter Bg. It can be
made to fit any non-uniform closure, if necessary being expressed in
tabulated form.

This paper of Gibson's is particularly valuable because of the
discussions by eminent engineers, e.g. Eugene Halmos, who gave an
excellent synopsis of Allievi's theory. He pointed out common errors
in using Allievi's formulae, due to carelessness in following the
instructions regarding their conditions of operation.

In 1923 Gibson invented an apparatus for measuring the
discharge of hydraulic turbines, using the pressure-time surges
caused by the closure of the gates. He used it for running efficiency
tests on new power plants. Another method invented by Prof. Allen
and known as the ''salt velocity" method, was equally accurate and
these two methods were in general use in North America during the

1920's and later.

(HAPTER 'V DEVELOPMENT - 1925 to 1955

Strowger and Kerr in 1926 presented a paper 4=0) on the speed

regulation of hydraulic turbines, using the method of computing the

pressure rise,and corresponding velocities due to the gate movement,
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given by Gibson (35). They took into account the efficiency of the
turbine at the different gate positions and considered both uniform
and non-uniform gate movement. From the values of head, velocity
and efficiency, they obtained the excess or deficiency in H.P.
input and calculated the speed variation.

The discussion of this paper, as in the case of Gibson's,
was of great value. P.F. Kruse discussed the effect in low-head
plants due to the relatively large proportion of the total X LV
which was in the draft tube passages. He used as a basis for his
calculations of the total pressure rise the total L LV. Then he
determined the pressure surges above and below the gates by using
the 2LV above and below as a criterion. He noted also that for
such installations the draft tube design involved not only the
regain of energy but the effect of the inertia of the water column

on the speed regulation.

T.H. Hogg and J.J. Traill gave valuable data obtained from

regulation tests on the 55000 H.P. units at Queenston and the

2200 H.P. South Falls units, both operated by the H.E.P.C. of Ontario.
In addition to the comparison of test and calculated regulation, they
pointed out that in some of the Queenston tests there was a
separation of the water column, causing violent shocks felt and heard
near the unit. With slower gate closure the shocks did not occur.

It was because of this separation rather than excessive pressure rise
that the governor traversing time was increased.

The author of this history also presented a discussion in which

he developed the graphical method. This will now be illustrated by

using the example already discussed in Gibson's paper (35).
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It is not difficult to show that the linear relation between head and
velocity during the second and succeeding periods may be simplified

to the form

he = —hy_o+ TV~ %),

This eliminates the inclusion of all the waves and their reflections
since the start of the gate closure and shows that all of these waves
and reflections are automatically incorporated in the single wave
which left the gate one period earlier.

If we use Jotxkowski's chart (Fig. 4) as a guide, the wave
w‘mich left the gate one period earlier is reflected from the reservoir
one half period earlier. There it has had its pressure changed by

an amount —h, _ and the velocity has been changed by a

t-4
corresponding amount — ght.4 . On its return to the gate it is now

a wave having

h=0; V= Vt-4— %’%-4 >

which is superposed on the new wave at time t, to give us the

equations
Vo= (1- 28,/ 7, 5 k=2 (%7 Zh.)-Y]

In FFig. 5, Gibson's example is illustrated by the graphical
representation of the above relations. ‘The velocity expressions are
represented by parabolas V = Gt [ H . In order to

standardize, the head and velocity are made dimensionless by putting

_ K S _V
h = HO-H-H.O, V = 7

The horizontal line OA represents constant head h =1, H = Ho;
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the vertical line through 0 represents zero velocity v =0, V = 0.
The vertex of the parabolas is at v = 0, h = 0, i.e. a unit distance
below 0. For uniform gate closure the parabolas are evenly spaced
along OA for uniformly spaced instants of time.
The linear expressions for ht (note that this is Gibson's /7t

and is not dimensionless), are now,in dimensionless form,
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e ale [Vt—4 _ V_t] _ hea
HQ- 9”0 Vo VB Hg

a
They are represented by straight lines having a slope of —

oS

W
03:

The gate parabolas in dimensionless form are
v=28/h

where ﬁ is a new dimensionless partial gate characteristic.

In the diagram the parabolas are drawn for time intervals of
quarter periods. 'The condition at the gate at times t = (1,2,3,4)%,
i.e. up to the instant T are given by the points B,C,D,E. The
condition at time 1.257 must satisfy the straight line MNF and
also the parabola for ¥ = /257 . These constructions meet at F.

In our dimensionless —’k equation above, the h

t-4
0
is represented by the point M, and the ( V¢_4—V{_) term by the

term

horizontal distance between M and F. The point M, a reflection of
point E across the OA axis, is used if we employ Gibson's modified
expressions. However, if we follow the preceding (t - 4) wave up the

pipe to the reservoir, the returning reflected wave is represented by

a Ve
9 Ho
reflection of this wave at the gate will give us the line NF to be

the point N, drawn from B with slope + Then the

satisfied by the gate condition, the parabola through F.

In order to use a single chart applicable to each particular
runner model, regardless of head and discharge and horse power for
any particular plant, this dimensionless h and v chart was used
as a base for each runner, and curves of equal H.P. excess,(or
dcl'icjcncy) were added. These curves are based on the model runner
performance (efficiency) at the part-gates. Thus, by reading off the

cxcess (deficiency) of I.P. at successive instants of time, the
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average I1.P. may be computed and the speed change found.

(37) Lhich

Lowy, R. in 1928 published his text on water-hammer
covered the analytical step-by-step solution of the surges in the
pipe line, and also (pp. 84 and following) his graphical method,
which is identical in development and operation with that of the
writer. ‘lThere is no doubt that the two studies were developed
independently of each other.

Lowy also studied resonant surges due to periodic
oscillations of the gate, (this period being %, that of the pipe
line), and surges due to gradual opening of the gate. He also
considered the effect of friction, as did Gibson (35) , but his
attack is more analytical, using the partial differential equations
witil friction terms added.

Lowy's work became the basis of the extension of the
gfaphical method by European engineers during the following years.
It was not until 1935 when Prof. Angus published a paper (42) at the

L.I.C. meeting in Toronto, which was based on the work of
Schnyder, that the earlier graphical study by the writer, which was
a discussion of the paper by Strowger and Kerr (36) , was recognized.
From this time on, engineers became more and more concerned
with the solution of the transient performance of systems in which
pipe lines were an integral part. The law governing the pressure
surges in the pipe lines had been solved, at least to a good
approximation, although it was not for some years that a more
rigorous solution of the effect of friction and of low moduli of

clasticity in the pipe walls was obtained. The main goal was to

tic in the characteristics of the various hydraulic elements connected
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with the pipe lines, such as pumps, surge tanks, relief valves, air
chambers and turbines, as well as to develop solutions for compound
pipes and pipe networks.

Since the various contributors who worked and published
during this period had ready access to the literature, and since the
time lag between research and publication is continually increasing,
it is difficult to determine priority for any new development.

For this reason a synopsis of the important publications is given
in chronological order. Any omissions therefore which are apparent

to the reader should be blamed on the writer's ignorance.

1929 Schnyder, O. applied the graphical method to the study of

pipe lines connected to centrifugal pumps, using complete pump

characteristics as determined by tests (38).

(39)

1931 Bergeron, Louis in an article extended the graphical method

to express an analytical relationship between the pressures and

velocities at any two points on the pipe line. VHis treatment is a
model of clarity. From the basic functional solution II he showed
that for two positions (sections) in the pipe P and Q which are

related in position and time by the condition
(x-aT)P:()(—af)g x-.3 XP”XQ:a(fP—fQ)p

their pressures and velocities are related by the equation

(H, —Hg)= - 7(Vp - o)

Similarly for two positions R,S, which are related by the

condition

(x—al)g=—(x=at), , or Kp—xg ==all 1)
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the equation relating their pressures and velocities is
v a N

Thus, if the values of H,V are known at two positionsat a given
time, these variables can be determined at the section midway between
them at a later time, later by the time required for waves to reach
it simultaneously from the two given positions. As an example,
referring to Fig. 5, if we are given the condition at the reservoir
and gate at the time t = T , (represented by points L and E
respectively), the line LK represents the first equation above, the
point L corresponding to P and any other point on this line
corresponding to Q at a suitable later time. Similarly, the line
EK represents the second equation, the point E corresponding to R
and any other point on this line corresponding to S at a suitable
later time. Since these two lines intersect at K, and since the
two pseudo-waves from L and E will reach the centre section at
the same time ¢ = 52' ,the point K gives the conditions at the
centre section at time 7 ='j?'f , and it can be considered as both
positions Q and S in the two conditions. In this way the
conditions at all sections in the pipe can be found if we know the
conditions at the two ends.

‘This treatment is of great value when studying pipe networks
and compound pipes. For these studies the additional laws necessary
for solution of the conditions at the junctions and change-in-
section are ‘—

(1) Continuity of flow, i.e. sum of all volumes of flow

into a junction is zero; and
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(2) pressures in all the branches at a junction
are equal.

(40)

1932 Schnyder in his article was the first, (using the graphical

method) to allow for friction along the pipe line. He drew a friction
curve below the velocity axis (i.e. the h =1 axis), with ordinate -FVZ,
(minus the friction head for the full pipe length, based on D'Arcy's
parabolic law). His constructions started from and were reflected from
this line instead of from the horizontal line h = 1.

This is an approximate method of lumped friction, all of the
friction head being ""lumped'' at the reservoir (upstream) end, and
is the graphical equivalent of Gibson's solution (35). Schnyder, in
this article, studied also the surges in compound pipes.

1933 Symposium, At the meeting of the ASME and ASCE during "Engineering
(41)

Week'' at the Chicago Exposition several papers were presented by
engineers from North and South America, and discussions by Engineers in
Europe also. A summary of the existing theory for simple pipe lines
was given. The papers presented were on high-head penstocks, compound

pipes, surge tanks and centrifugal pump installations, equipped with

air chambers and relief valves.

(42)

1935 Angus, R.W. presented a paper covering the basic theory and

some applications of the graphical method, including the use of
"lumped" friction and the study of pump installations.
(43)

covering all

1937 July, August Bergeron wrote a general paper
the theory of plane elastic waves in various media, longitudinal bars,
vibrating strings, torsional oscillations with and without

attendant masses and flywheels, electric transmission lines and water-

hammer with "'lumped" friction. This was followed in 1938 by a paper



- 45 -

of a similar nature at the 5th International Congress of Applied

Mechanics.

1937 December. Second Water-Hammer Symposium ASME, ASCE, and AWWA,

held at the annual meeting of the ASME in New York. Many papers were

presented by Ingineers from both America and Europe.

Allievi presented a paper in absentia on the use of Air Chambers in

(44)

discharge lines This was his last paper (translated by Halmos).

Angus presented a paper on the effect of air chambers and valves in

- pump discharge lines (45).

De Juhasz, K.J. presented a paper in Fuel Injection Systems £40) .

This was very instructive, using the graphical method, with stereo-

grams to illustrate the operation of the waves.

Knapp, F. presented a paper on emergency shut-off valves (47) -

Knapp, R.T. presented a paper L45) in which he discussed the complete
characteristics of Centrifugal Pumps. This paper is similar to, but
in much more detail, than the earlier paper by Schnyder (38) ana
indicates how the pump characteristics can be tied in with the surges
in the pipe line.

Schnyder presented another paper comparing calculated and test results

on water-hammer surges in pump lines (49)

Strowger presented a paper (50) on water-hammer in a hydro-electric
plant with governor-controlled relief valve, both with and without

allowance for friction.

The writer presented a paper (51) using Heaviside's operational

calculus. Included was the analytical solution using a linearized
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friction term. The fundamental continuity and dynamic equations were

developed, the former including for the first time the total

s dp _ P 2P
derivative a7 = 3F +V T

The friction term was expressed as

fy 2 _ 2+Y
2LV = 5 (k) Vs

where Vcn is the maximum velocity and kf some suitable constant.
The solution showed the velocity and pressure surges gradually died
down to the final steady state. It was found that a dimensionless
quantity, called the friction modulus, was a criterion for similarity
of solutions throughout the field (i.e. for the simplified case of
linear friction and neglect of the V% and V%: terms) and is the

only parameter required. This modulus is

Z‘FL kvm
¢: = "a .

This symposium was very interesting and instructive due‘to
the presence of most of the leading workers in the field. Louis
Bergeron was present and discussed almost all the papers as soon as
they were presented. He sat beside Pierre Danel, who translated the
papers for him, noted his comments and then delivered this discussion
to the meeting. This included the result of rapid graphical analyses.

Bergeron, in fact, stole the show.

1938 Angus presented a paper (32) considering compound and branched
pipe lines. lle also studied breaches of the water column in pump
lines, and the effect of friction, suggesting, for greater accuracy,
dividing the pipe length into several sections and using ''lumped"

friction in each section.
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1940 Boulder Canyon Project. The report (53) compared theory with

test results of water-hammer surges in the penstocks.

(54)

1944 Rich, G.R. presented a paper in which he used the Laplace

transform, solving in particular the case of friction using a
linearized approximation, and compound and branched pipe lines. The
solution for the case of friction was in Bessel functions and their
integrals. In comparison, the use of the Heaviside Calculus (1)
leads to cumbersome and sometimes very slowly convergent series.

(55)

The writer in 1951 wrote a paper which was a general study of

the graphical method applied to elastic surges in various media.

This was similar to the earlier general paper by Bergeron (43) .

(62)

1953 Lupton, H.R. presented a paper in which he studied

surges in pump discharge lines with reference to the separation of

the water colum.

November 1955. Several papers were presented at the Diamond Jubilee

Annual meeting in Chicago, where the ASME, ASCE and AWWA all
participated, as in the earlier symposiums in 1933 and 1937. Two of

these papers dealt with pump discharge lines.

Richards, R.T. (63) compared theory with tests in several pump

discharge lines, with particular regard to the water-separation. His
simplest example, involving a practically horizontal pipe line, showed
a theoretical surge of 4% in excess of the test surge, when the vacuous
space collapsed after the first separation, and the test showed
rapidly decreasing surges with time. The theory was based on Angus

and Bergeron.
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(64)

Kittredge, C.P. presented a more general paper which covered

theoretical solutions for pump discharge lines using the complete
pump characteristics,and comparing the solution for rigid and elastic
colum theories. Reference is given here also to his earlier paper
using rigid column theory in 1933. He stated that the elastic colum
thcory gave higher peak surges but that in cases where the friction
losses were considerable, the rigid column theory, neglecting
%riction, could be expected to give solutions within a few per cent

of the test values.

While on this subject of water-column separation, the following
references are appropriate:

Duc, F. published an article in 1959 (65)

in connection with tests
on a transparent pipe 3300 feet long. He found that where gravity
could exert its influence in steep sections of the line, there was
no visible cavity in the colum even though there were present all

the signs of vacuum formation.

Sharp, B.B. 1is conducting some recent work of which the writer has
just become aware. He presented a paper in 1966 (66) in which he

discussed the effects of the separation of the water column.

The abstract of these papers on column separation shows that
more detailed study is required, considering several significant
factors such as the profile and length of the line. Special
laboratory tests are indicated and it appears that low pressure
ranges should be used in order to make visual observations in
conjunction with the regular surge instrumentation. Due to limited

space it seems necessary to use pipes of low modulus of elasticity
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and corresponding low wave velocity of the order of 100 to 500 ft/sec.
The problem of water-hammer in steam pipes is attracting more

attention and it is evident that it offers particular difficulties

for solution due to the mixture of gas and liquid, i.e. the

interaction between the steam and condensate.

Signor, C.W. and Ashrae, J. have written a recent article ©7) on

this matter. Some of their conclusions are -
1) removal of condensate, as soon as it forms,
reduces surges,
2) water-hammer occurs when the condensate is
cooler than the steam, and
where the line is either horizontal or inclined

upward in the direction of flow.

CHAPTER VI DEVELOPMENT SINCE 1955

There have not been many workers, in this period, on
fundamental research of surges in pipe lines, due to the fact that
the theory has been well developed and approximations for the effect
of friction and other non-linear factors are reasonably accurate in
the field of hydro-electric and pumping plants, where the friction
losses are kept low and the pipes are metal. The need has been to
improve our knowledge of the interaction between the various hydraulic
devices (pumps, turbines, valves, etc.) and the-pipe lines, i.e. the
need to improve our knowledge of the boundary conditions of the pipe
line surges. ‘

Any rcfinement in the theory has been for cases of low

moduli of elasticity in the pipe walls and high friction losses.
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. : V
The addition of the non-linear terms V %? and Y %(E
in the fundamental equations precludes solution in neat closed
mathematical form,and the use of step-by-step arithmetic integration,
with finite differences, is necessary, and this has proved to be
arduous, time consuming and complicated in execution.

It was not until the late 1950's that the electronic computer
became a possible tool for use in this field, and during the past
ten years this has become of great value in the development.

In the following, which deals mainly with these non-linear
studies, the writer wishes to apologise for the lack of depth in
the record of work by other workers, particularly outside North
America, The work of each researcher will be presented in turn and
in sufficient detail for the reader to appreciate the work without

studying the literature first-hand.

(56)

Research by the writér. A paper was printed in January 1958 in

which surges in pipe lines and surge tanks were studied by the
graphical method, including non-linear friction. Using Bergeron's
wave relations (39) for illustration, these were modified to the

form

8
HQ-HP+;,{» FVdy = - g(va— Vo) 3

s
He H, 4-7/5? FVdx = + g(VS—%).

Here the factor = é)l Vl, using D'Arcy's f, so that the friction
term will reverse in sign for a reversal in the direction of flow.

Also the '"directed" integral ]‘; signifies integration along the
positively directed wave, travelling from P to Q. This takes

the sign of V and can be approximated by using the average value
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of FV along this wave, and multiplying by the distance dx = PQ.

In the calculation the value of VQ is determined by trial and error.
For the negatively directed integral 76' from R to S, dx is
negative.

These interlocking equations were reduced to dimensionless

form, using h= —f{i » V= v , and the construction lines having the
o o
modified slopes + @aVe
- 9H,

For a completely graphical solution the friction can be

included by superposing curved lines above and below the inclined

: . . av; g :
construction lines having slopes of ¥ 7 H", the vertical distance
<o
between the two sets being equal to F_V,1 This makes it possible to
Vo

find the unknown condition S = Q without trial and error. However,
the constructions are time-consuming and it is fair to say that the
graphical method is most valuable for cases where friction is
neglected. In this study it was found desirable to use the graphical
solution as a basis for an analytical solution. This gave greater
accuracy. Also by constructing a table on a position-time grid it
was possible to pursue the solution up and down the pipe and on in
time by listing the appropriate formulae for each operation. In fact
windows were cut in a stencil, for each operation, with suitable
factors written beside each window according to the operation formula.
In this way errors in calculation were minimized and greater speed
attained. This use of a position-time grid was used in later work
until the electronic computer came into use.

By the year 1961 computer programmes had been run for the
dimensionless solutions including non-linear friction, using friction

modulus values ranging between ¢= 0 to 1.0 (see Ref. 51), and
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rejection of velocity at the gate (due to sudden gate closures)
of .25, .5, .75 and full. This work was not published as it showed
close agreement with the earlier work (Ref. 51 and 56)-

In the study of surges in pipes having a low modulus of

1Y%
3P X
and V a—)’(— must be considered. For metal pipes (steel, copper,

elasticity, such as rubber and plastic, the non-linear terms V

etc.) these terms have a relative importance to the time-derivative

V

terms with which they are associated of v R and for wave
propagation velocities in metal pipes of the order of 3000 ft/sec.,
this relative importance is of the order of one tenth of a percent.
For non-metallic pipes, however, the wave velocity may be of the
order of 50 ft/sec, so that these non-linear terms have a relative
importance of thegorder of ten percent.

Several difficulties arose, during the progress of this

research, of a fundamental nature. To enumerate, these were:

(1) The cross-sectional area varied appreciably under
varying pressure due to the low modulus of
elasticity of the pipe walls. Even for steady flow
in a horizontal pipe, the pressure drop due to
friction losses affected the area and velocity.

Similarly the profile had to be taken into account.

(2) Determination of the friction coefficient (e.g.
D'Arcy's f) was difficult to obtain by test and the
variation in area and velocity during steady flow
runs required special treatment and programming.

All equations and development had to be based on

the conditions at the entrance under steady flow
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designated by the subscript zero.

(3) Determination of the modulus of elasticity was
impossible by using the standard laboratory tests
in tension or otherwise. For rubber hose this
is partly due to the method of manufacture - by
vulcanizing a strip of rubber in a spiral - so
that the cross-section is not isotropic. For
plastic hose, this is partly due to the effect of
temperature and ageing on its properties. The
solution of this difficulty was found by obtaining
a volumetric strain in the hose under varying
pressure, and when possible this was done with the
hose in place ready for the surge tests. Thus the
equivalent bulk modulus, water and pipe combined,
was determined by the formula

P
Ke=Q —i—a :

(4) Entrance loss was found to be significant. Thus the
pressure drop at entrance is due to the increase
in kinetic energy and friction loss, and is of the
order of [-5 ZLf feet. In terms of the

velocity modulus & this is equal to hez 75 5.

(5) To consider the effect of the profile it was necessary
to express the drop in elevation in terms of the
friction modulus. Thus for a uniform slope giving a
total drop of -5 /-/f this drop in elevation could be
expressed by the dimensionless quantity -5 ¢ .
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(6) The slopes of the characteristics + and C_ vary

considerably for small a.

These studies were completed and an abridged edition of the
results was published (50 in 1966. This article is unsatisfactory
for a detailed study and a later, more complete, report was
published (58) in January 1969. The details of this study will not
be discussed further. To give the reader a general idea of the
extent of the study, the fumdamental equations are given in the
List of Symbols and Figures 6 to 10 indicate the development and
findings. It has been shown that the whole field of surges in pipe
lines can be standardized to depend on two parameters only, viz. the

friction modulus @ and the velocity or elastic modulus 2.

Figure 6 - shows the pipe element in developing
the theory.
Figure 7 - indicates the scheme of computer

solution (the x-t grid).

Figure 8 - gives the pressures at gate, sudden

closure, ¢ =2 15 -8; € =0,:15,

Figure 9 - gives gate conditions under steady

flow, = .05 1o -25

Figure 10 - gives theoretical and test results

for surges in rubber hose.
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Figure 9.

Pressure and Velocities at Gate for Steady Flow
$ = .2tol.0and ¢ = .05 to .25
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Research by V.L. Streeter

A paper was presented by Streeter and Lai (59) in 1962 which
was the first published study using computer methods, necessary
because of the non-linearity of several terms in the wave equations.

L 2P .
Taking into account the V?l and V 3% terms resulted in waves

X
of propagation having velocities Via , i.e. the velocities are
+ 4 with respect to the moving fluid. They showed that the accuracy
of the calculations increases with the reduction of the grid size,
i.e. the reduction of AX and AT , and this was incorporated
into the programmes to give the true values of the solutions by
extrapolation, the error varying as the square of the grid size.

(In the writer's programmes (58) he found that even in the case of
discontinuities, as for sudden gate closures, the succes:sivé
corrections for each 50% reduction in grid dimension were also
reduced by 45 to 55%). The programme is set up to solve for both
turbulent and laminar flow and solutions were found for both sudden
and gradual gate closure. They assumed, regarding the elemental
grid, that the slopes of the characteristics C_C_ were constant
within the grid. The writer was unable to use this assumption for
his cases of low elastic moduli and low wave velocity. A greater
discrepancy between their tests and theory occurred in the case of
laminar flow,which they considered as probably due to the assumption
of const-aht velocity across the section. Unfortunately the
characteristics of the copper pipe used in the tests made the v ;—:
and V%—E- terms significant only to the order of 0.001, so that
the discrepancy between theory and test was not affected by their

inclusion.
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In 1964 and 1966 Streeter presented papers (60,61)

in which
he treated a wide variety of applications, using computer programmes
with non-linear friction. He neglected the non-linear velocity and
pressure terms as his study was confined to metal pipes.

Amongst the problems considered in detail were -
(1) compound and parallel pipes and general networks,

(2) pump failures using dimensionless homologous
complete pump data linked with the pipe
characterics,

and

(3) resonance studies and valve operations to control
the surges. This is a very complete treatment
showing the applications of computer methods to

pipe systems of all types.

Supplementary Remarks

With the use of electronic computers there is less or no
need to use approximations for the operations of the various parts
of hydraulic systems. In the past, such approximations were used
to make availablc the mathematical tools for proceeding with the
solution. In general our mathematical tools cannot solve non-linear
problems in a closed form. Since practically all of our physical
laws are non-linear, we are forced to use finite difference methods,
with smaller differences for greater accuracy. The resulting
increase in the calculations is now no deterrent to the use of smaller

differences because of the speed of operation of the computer.
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Thus in future we should search for accuracy in stating our
physical laws of operation of each hydraulic element. If these laws
do not fit into some mathematical pattern, or approximately so, they
may be expressed in either graphical or tabulated form, which can be
fed into the computer.

In the case of hydraulic turbine and pump characteristics,
it is doubtful if individuals or independent research teams (such as
university research programmes) can cope with this objective. It will
most probably be undertaken by the manufacturers, who will determine
with greater accuracy the characteristics of their products as the
néed arises for greater refinement in design.

Complete characteristics of centrifugal pumps have been
used in rclation with surges in pump pipe lines. This does not appear
to have been done for turbines. For these latter, we need in our
complete analysis the performance (i.e. discharge, efficiency and
horsepower) for a range of head and R.P.M. at each of a series of
géte positions.

There are still some features of surges in simple pipe lines
which require more refinement. One is the effect of acceleration
and deceleration on frictional resistance, for both turbulent and
laminar flow. Some theoretical studies have been made on this topic,
but the main difficulty is in developing accurate experimental
programmes to vindicate the theory.

A second matter is that of the rupture of the water column
when the pressure is reduced to the vapour pressure. Here again
there is need for a broad experimental programme.

A third matter is the determination of the laws governing
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the reflection of the surges at the pipe boundaries. Considerable
study has been made on the operation of gates and valves, and this
problem appears to be in good progress. In the case of the
operation of hydraulic turbines and pumps, their complete
Characteristics should include the effect of any gates and valves
present !m the installation.

A fourth matter is the study of surges for laminar flow.

For those who wish to pursue the subject in more detail,
particularly in any specialized branch, there are many bibliographies
in the references. In addition there are several text books of
recent date, such as those by Parmakian (58) » Rich (69) , and

Streeter and Wylie L) :
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NOTATION AND SYMBOLS

Cross-sectional area

Velocity of pressure wave propagation = /4 Ke/ Y

Thickness of pipe walls

are the characteristic curves at slopes g_’:— = Vi—a
inner pipe diameter
Young's Modulus of Elasticity for the pipe material
strain in the pipe material
2,.{g:—[)lw, D'Arcy, or in general = 'S”(V)‘
friction coefficient, D'Arcy.
acceleration due to gravity
Pressure head = P / Y
FLV®

friction head loss = D 7; . D'Arcy

Total friction head loss for length L with constant VOD0

a Ve, . : 6
——2 - pressure head rise for velocity rejection V

Vc;glume modulus for the fluid

Volume modulus for pipe walls and fluid combined
Volume modulus for pipe walls alone

Pipe length

Number of equal pipe segments

Pressure

Volume

Pipe radius

time

displacement from equilibrium position x

velocity
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= distance along pipe from intake or equilibrium position

= yertical distance of section below intake
= weight density of liquid
= period of wave = =L

= inclinatien of pipe to horizontal

Dimensionless Quantities

= H/H0 for graphical treatment

= H/Hr for analytical treatment (non-linear study)

Vo, oy Y
=V YT

= Friction Modulus = Heo
Ry
= Velocity Modulus =V 0/at
= V/a i (Mach. Number)
= 2 D° -
fL

Interlocking equations

W __ 4 4P _ _ 1 [2P 3_"]
WK df el:Bf VR

P ind =X.dV _ Y[ oV
-EX__XFV-*_Y'SWIQ—QF 7] 3¢ +VBX
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