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[1] We consider parameters determined by the inversion of slug-test head recovery data
with the homogeneous-parameter model of Cooper et al. [1967] to be weighted spatial
averages of transmissivity and storage defined at a smaller scale. We quantify the spatial
averaging using a power-average spatial filter expression.We determine the form of the filter
function and the power exponent using numerically simulated slug-test data. The filter
function that describes how smaller-scale transmissivity is weighted by slug tests displays an
approximate 1/r2 behavior, with r the radial distance from the well. The radius of the
cylinderical volume that is averaged by the slug test is inversely proportional to the square
root of the storage coefficient (larger averaging volume with smaller storage). The power
exponent grows from �0.19 to 0.345 as the ratio of the characteristic scale of
the heterogeneity to the characteristic scale of the averaging volume grows, although a power
exponent of zero, corresponding to geometric averaging, provides good results for most
simulations. Our results show that while slug tests are useful to estimate transmissivity, they
have dubious value for estimating storage coefficients. We find that the transmissivity
estimate is unbiased and does not appear to be strongly influenced by storage properties. The
storage coefficient estimate is, however, strongly influenced by the transmissivity and is
biased. We investigate the interaction between storage coefficient and transmissivity by
examining an analytical slug-test model that contains two annular zones, each with distinct
transmissivity and storage coefficient. INDEX TERMS: 1829 Hydrology: Groundwater hydrology;

1894 Hydrology: Instruments and techniques; KEYWORDS: slug test, groundwater, transmissivity, hydrology
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1. Introduction

[2] Slug tests are used to characterize the hydraulic
conductivity and storage properties of the subsurface. While
the natural subsurface is always heterogeneous to some
degree, slug-test data are usually interpreted with simple
analytic models that contain spatially homogeneous param-
eters. The objective of this work is to investigate how
smaller-scale heterogeneities affect slug-test derived param-
eter values. We consider the homogeneous parameters
identified with simple slug-test models to be spatial aver-
ages of heterogeneous parameters in the near-well region. In
this paper we therefore investigate the type and scale of
averaging that occurs when slug-test data are analyzed to
determine hydraulic parameters.
[3] This work is motivated by the observation that the

parameter values determined by slug-test analyses often
differ from those determined at the same location using
other testing methods, such as larger-scale pumping tests or
smaller-scale core tests [Butler andHealey, 1998]. The differ-
ence in the results can in part be explained by the different

volumes of the subsurface that are sampled, or averaged, by
each test method. It is important to understand these support
volume effects when interpreting hydraulic tests.
[4] Many researchers define the range or scale of a slug

test, and thereby the volume investigated by the slug test, as
that distance at which the head perturbation caused by the
slug test has dissipated to a specified fraction of the initial
excess head at the well bore [Barker and Black, 1983;
Guyonnet et al., 1993; Karasaki et al., 1988; Ramey et al.,
1975; Sageev, 1986]. Karasaki et al. [1988] and Guyonnet
et al. [1993] show that for two-dimensional flow conditions
this perturbation distance is proportional to a dimensionless
storage term, rr=rw /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pr2c=pr2wS

p
, where rr is the maximum

distance traveled by a specified fraction of the initial excess
head over the duration of the slug test, rw is the radius of the
well bore, rc is the radius of the well casing, S is the storage
coefficient, and prc

2 is the well bore storage. The range of
the slug test thus grows as the storage coefficient shrinks.
[5] These results suffer from three basic limitations. First,

the range of a slug test is often defined in terms of an
arbitrary fraction of the initial excess head; e.g., 1%, 5%, or
10%. Second, most analyses ignore the effects of hetero-
geneity and are performed in homogeneous systems, or
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systems with idealized heterogeneities (e.g., annular hetero-
geneities or low-permeability skins). Third, the range does
not provide information about the relatively greater influ-
ence on the measured properties of the subsurface near the
well compared to those of the subsurface farther away from
the well.
[6] Harvey [1992] conducted Monte Carlo simulations of

slug tests in three-dimensional realizations of random
hydraulic conductivity fields to find the radius of a cylinder
around the well, and the power averaging within the
cylinder, that gave the best agreement between the esti-
mated conductivity from the slug test and that computed by
volume averaging within the cylinder. He found that: (1)
The volume measured by a slug test was well approximated
by rc=

ffiffiffi
S

p
, in agreement with the perturbation distance

described above. (2) The type of averaging within the
cylinder varied from near the geometric mean for two-
dimensional systems, to larger values for some three-dimen-
sional systems. (3) Conductivity estimates obtained simul-
taneously with specific storage estimates reflected the actual
conductivity within a much larger volume than when the
conductivity was estimated alone by specifying the specific
storage to the true value. (4) Estimated specific storage
values reflected near-well conductivity values, and hence
were quite variable and biased to be larger than the true
specific storage values because of larger effective conduc-
tivity near the well. These results were all predicated on the
assumption that the slug-test estimated parameters are
affected equally by all conductivity values within a cylinder
of finite radius, but abruptly insensitive to conductivity
beyond this radius. Our analysis, based upon a spatial
filtering approach, addresses the limitations of earlier stud-
ies. The essential contribution we make is to determine the
spatial filter functions that best reproduce the transmissivity
and storage determined by analyzing slug-test data with a
simple homogeneous-parameter model.
[7] Our paper begins with a review of the spatial filtering

concept and how it applies to hydraulic well testing. We
then discuss the numerical methods we use to simulate slug
tests and determine the spatial filter functions. We first
present filter functions computed using a sensitivity method
in systems with homogeneous parameters. We show that the
support volume of the filter function, and therefore the scale
of a slug test, depends upon the storage parameterffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

pr2c=pr2wS
p

. We next use a deconvolution approach to
examine systems with heterogeneous aquifer transmissivity
and spatially uniform storage coefficient. We investigate a
spatial power law filter for heterogeneous transmissivity
fields, and the effect of heterogeneity length scales upon the
value of the power exponent. We do not consider the case of
spatially heterogeneous storage coefficient. Indeed, storage
properties are thought to be less variable than transmissivity
[Dagan, 1989, p. 163], and the head in the slug well is much
less sensitive to aquifer storage than to transmissivity
[McElwee et al., 1995a].

2. Methodology

[8] We use a simulation approach to investigate the
relationship between smaller-scale hydraulic parameters
and the parameters that are measured by a slug test. We
simulate slug test data in homogeneous and heterogeneous
systems using a two-dimensional numerical flow model,

which we call the aquifer model. We determine slug-test
measured hydraulic parameters by fitting the aquifer model
data with a one-dimensional uniform-parameter slug-test
model. We relate the parameters of the two-dimensional
aquifer model (small-scale parameters) to the slug-test
measured parameters using a spatial filter.

2.1. Spatial Averaging Under Steady Radial Flow

[9] The approach we take follows closely upon the work
of Desbarats [1992], who examines the spatial averaging of
transmissivity under conditions of steady state, two-dimen-
sional radial flow toward a well, such as occurs during a
constant discharge test. Motivated by bounds derived by
Cardwell and Parsons [1945], Desbarats [1992] proposes a
weighted geometric spatial average TAr

over a region A as an
approximation for the effective transmissivity in that region:

ln TAr
¼ 1

WA

Z
A

yðxÞ
r2ðxÞ dA; ð2:1Þ

where x is the spatial coordinate, y(x) = ln T(x) is log
transmissivity and for a region of area of A, Wa ¼

R
A

dA
r2ðxÞ .

Desbarats [1992] defines the effective transmissivity as that
transmissivity determined by the analysis of drawdown in
the pumping well using either one of two simple analytical
radial flow models. In a set of numerical Monte Carlo
experiments, the transmissivity determined using the spatial
averaging formula provides excellent agreement with both
effective transmissivities.
[10] To extend these results to three-dimensional flow,

Desbarats [1994] introduces a generalized weighted power
average of hydraulic conductivity KV, as an approximation
for the effective conductivity KE determined by the analysis
of drawdown from a steady state constant discharge test,

Kw
V ¼ 1

W

Z
V

kwðxÞ
r2ðxÞ dV ; ð2:2Þ

where V is a drainage region, w is a power exponent, k is the
hydraulic conductivity and W ¼

R
V

dV
r2ðxÞ . The essential

difference between (2.1) and (2.2) is the power exponent w,
which accounts for dimensionality effects. By expanding kw

in a Taylor series, Desbarats [1994] approximates (2.2) by

ln KV � yV þ w
2

1

W

Z
V

ðyðxÞ � yV Þ
2

r2ðxÞ dV ; ð2:3Þ

where y(x) = ln k(x) and yV ¼ 1
W

R
V

yðxÞ
r2ðxÞ dV . This relation-

ship allows Desbarats [1994] to develop a geostatistical
model that relates the effective conductivity of the drainage
region to the conductivity at the well.

2.2. Spatial Filtering Approach

[11] Similar to Desbarats [1992, 1994], we conceive of a
slug-test measured parameter, Z(x) (either storage S or
transmissivity T) to be a weighted spatial average of z(x),the
corresponding parameter defined at a smaller scale. This
weighted spatial averaging can be mathematically repre-
sented as a spatial-filtering operation [Beckie, 2001],

ZwðxÞ ¼
Z
V

Gðx� x0Þzwðx0Þdx0; ð2:4Þ
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here written as a nonlinear filter using a power exponent
w. The value of the filter function G is the weight given to
the smaller-scale property in the spatial average. The
support volume can be thought of as that volume where
the filter function has significant weight. In this frame-
work, (2.1) and (2.2) can be viewed as linear and power-
average spatial filters where the parameters defined at a
smaller scale, y and kw are filtered with filter functions that
decay as r�2 away from the well. In (2.4) and (2.2), the
smaller-scale properties are averaged arithmetically when
w = 1, harmonically when w = �1 and geometrically when
w ! 0.
[12] Because the hydraulics of slug-tests are transient, our

analysis differs from Desbarats’ analysis of steady state
flow to a well in that we must consider both the estimates of
T and S, and the potential relation between these estimates.
In addition, for the slug test T and S can only be estimated
through an inverse procedure whereas transmissivity and
conductivity can be directly estimated using the steady state
analytical models for two- and three-dimensional radial
flow, respectively.
[13] Following Desbarats [1994], we also consider an

approximation of (2.4) that relates smaller-scale transmis-
sivity to Tmeas the transmissivity determined by the inver-
sion of slug test data,

ln Tmeas � YV þ w
2
S2V ; ð2:5Þ

where YV ¼
R
V
Gðx� x0Þyðx0Þdx0 is a spatially averaged log

transmissivity, and S2V ¼
R
V
Gðx� x0Þðyðx0Þ � YV Þ2dx0 is a

spatially filtered variance of log transmissivity [see
Desbarats, 1994, equations (10)–(13)]. This approximation
of the nonlinear filter (2.4) can be used to develop a
geostatistical model such as described by Desbarats [1994]
(note that the approximation is linear in w but nonlinear,
through the S2V term, in log transmissivity). We do not
pursue a geostatistical model in this paper, but show later
that the values of the power exponent determined using the
approximation (2.5) agree closely with those determined
using the nonlinear filter (2.4).

2.3. Slug-Test Models

[14] The most common analytic models used to interpret
slug tests are the Hvorslev [1951], the Bouwer and Rice
[1976], and the Cooper et al. [1967]. The properties, appli-
cation and extension of these basic models are presented by a
number of authors [Barker and Black, 1983; Bouwer, 1989;
Brown et al., 1995; Butler and Healey, 1998; Butler et al.,
1996; Chirlin, 1989; Dagan, 1978; Dax, 1987; Demir and
Narasimhan, 1994; Faust and Mercer, 1984; Harvey, 1992;
Hyder and Butler, 1995; Hyder et al., 1994; Karasaki et al.,
1988; McElwee et al., 1995a, 1995b; Moench and Hsieh,
1985; Novakowski, 1989; Pandit and Miner, 1986; Peres et
al., 1989; Ramey et al., 1975; Sageev, 1986; Wang, 1995;
Widdowson et al., 1990; Yang and Gates, 1997; Zlotnik,
1994]. We focus on slug tests in perfectly confined aquifers
with fully penetrating wells. Chirlin [1989] reviews the
applicable models and concludes that the Cooper et al.
[1967] method most accurately represents the physical
processes. In particular, the Bouwer and Rice [1976] and
Hvorslev [1951] models employ approximations to account
for the effects of elastic storage [Brown et al., 1995; Chirlin,

1989; Demir and Narasimhan, 1994]. Accordingly, we use
the Cooper et al. [1967] slug-test model as the basis for
our analysis of slug tests in perfectly confined aquifers
with fully penetrating wells.
[15] The Cooper et al. [1967] slug-test model is defined

by the following boundary-value problem,

r 
 ðT 
 rhÞ ¼ S
@h

@T
; r � rw; ð2:6Þ

Z2p
0

T
@h

@r
rdq ¼ pr2c

dHwb

dt
; r ¼ rw; ð2:7Þ

hðrw; tÞ ¼ HwbðtÞ; ð2:8Þ

Hwb ¼ Hwbð0Þ; t ¼ t0; r ¼ rw ð2:9Þ

where h is the hydraulic head, Hwb is the head in the well
bore Hwb(0) is the initial excess head and t, r, and q are time,
radial and angular coordinates. Jaeger [1940, 1955] first
published analytic solutions for these equations, which in
his case are applied to thermal slug tests that are used to
estimate thermal conductance and heat capacity of the ocean
floor. Cooper et al. [1967] then introduced the solution to
the groundwater literature.

2.4. Filter Function Identification

[16] In this work, we first identify the filter function G
using a sensitivity approach, and then identify the power
exponent w using a deconvolution method [Beckie, 2001].
While it may be theoretically more desirable to estimate
both simultaneously, we find that a two-step approach is
more practically implemented. Indeed, we first determine
the filter function G for the case when the smaller-scale
transmissivity field is spatially homogeneous. The identi-
fied filter function G then can be thought of as the function
that is applicable to the case of weak heterogeneities in a
homogeneous background. Note that when the smaller-
scale field is homogeneous, the power exponent w has no
effect and can be set to one. We show later that the filter
function identified using homogeneous properties can be
applied to transmissivity fields with strong heterogeneities
(SV

2 up to 7.9).
[17] We use a deconvolution (or regression) method to

determine the power exponent w for heterogeneous fields.
To do this, we fix the filter function to the function
identified in the previous step using the sensitivity method
with homogeneous parameters. We assume that w is
dependent upon the correlation structure of the underlying
smaller-scale parameter field, but that the filter function G
is independent of this structure. Later, we evaluate these
assumptions a posteriori by cross plotting slug-test meas-
ured parameters against those parameters determined using
the spatial filter expression.
[18] In application of the spatial filters to field estimation

problems, the detailed structure of the smaller-scale param-
eter field will not be known. In that situation, one can only
hope that the spatial filter is relatively insensitive to the
unknown details of the parameter fields. We show later that
this appears to be true for relatively unstructured hetero-

BECKIE AND HARVEY: WHAT DOES A SLUG TEST MEASURE 26 - 3



geneity. Large-scale organized heterogeneities, such as high
conductivity channels or fractures, are often revealed in the
head-recovery data, which deviates very strongly from a
homogeneous-aquifer (ideal) response. If a strongly non-
ideal response is observed, it would be imprudent to attempt
to interpret the data with a homogeneous-parameter model,
or to apply a spatial filter based upon such a model.
2.4.1. Sensitivity Method
[19] The sensitivity method that we use is presented by

Beckie [2001], so we provide only a brief description here.
We must define: (1) the smaller-scale model that we use to
simulate the real-world slug-test, (2) the larger-scale model
that we use to interpret the slug-test data, and (3) how we
determine the larger-scale model parameters that best fit the
slug-test data (the inverse method).
[20] We simulate slug-test head recovery data numeri-

cally in two-dimensional aquifers with either homogeneous
or heterogeneous parameters. We solve the boundary value
problem given by equations (2.6)–(2.9) using a numerical
method that we describe later. We call this the smaller-
scale model or the aquifer model, and denote the head
solution h(x, t; z), where h is the small-scale head and z is
a 2nb � 1 vector of aquifer-model parameters (e.g., trans-
missivity and storage in each of nb gridblocks of a
numerical model).
[21] We interpret the head-recovery data with what we

call the slug-test model or larger-scale model. This model is
again given by equations (2.6)–(2.9), now, however, with T
and S spatially uniform. We denote the solution to this
model H(x, t; Z), where H is the large-scale head, and Z is a
2 � 1 vector of slug-test model parameters.
[22] If we specify the small-scale model parameters z,

then we can simulate the head recovery in the well at nt time
steps h(xw, ti; z), i = 1,. . .,nt, where xw is the position of the
well and ti is the time at the end of time step i. We can then
determine slug-test measured parameters from the head-
recovery data as the parameters Z that minimize the
following least squared error objective function,

ðh�HðZÞÞTWðh�HðZÞÞ; ð2:10Þ

where h is an nt � 1 matrix containing the well bore head
computed at nt times using the smaller-scale model with
parameters z, and H(Z) is a nt � 1 matrix containing the
well bore head computed at nt times using the slug-test
model with parameters Z, W is a weighting matrix and
superscript T indicates matrix transpose. In this paper, all
results are obtained with the weighting matrix set to the
identity matrix, and with time steps separated by equal
intervals of log time.
[23] As we employ numerical models, it is appropriate to

develop a discrete, finite-dimensional filter relating the 2nb
� 1 vector of smaller-scale parameters z to the 2 � 1 vector
of slug-test measured parameters Z. Such a filter is written
with a 2 � 2nb filter matrix G

Z ¼ Gz; ð2:11Þ

(see equation (2.4)). As we consider power averages of
transmissivity and not storage coefficient, it is convenient to
use transmissivity to the power w and storage coefficient in
(2.11), such that z ¼ tw

s

� �
and Z ¼ Tw

S

� �
, where t and s are

transmissivity and storage coefficient defined at the smaller
scale. For the case of geometric averaging of transmissivity,
filter matrix then can be partitioned into 4 submatrices
G ¼ GYY GYS

GSY GSS

� �
. Each submatrix can be interpreted as an nb-

gridblock discretization of a filter function relating
parameters from the gridblocks of the smaller-scale model
to the slug-test-measured parameters. For example, GSY

relates smaller-scale log transmissivity to the slug-test
measured storage coefficient.
[24] Using a sensitivity approach, Beckie [2001] develops

an expression for G in (2.11) for the case when the power
exponent w is equal to one,

G ¼ FTWF
	 
�1

FTWf : ð2:12Þ

where [F]ij = [@H(xw, ti; Zb)]/(@Zj) and [f]ij = [@h(xw, ti; zb)]/
(@zj) are the slug-test and aquifer model sensitivities. The
value of [G]ij can be interpreted as the influence of a
perturbation in the value of an aquifer model parameter z in
gridblock j from some base-case upon the slug-test model
parameter Zi. We determine the model sensitivities f and F
in the filter expression (2.12) using the discrete adjoint-state
theory of Townley and Wilson [1985]. We verify the
derivatives by comparison to brute-force finite differences
and to the results of McElwee et al. [1995a]. Having
determined the filter function G using a sensitivity method,
we next determine the power exponent w using a
deconvolution approach.
2.4.2. Deconvolution Method
[25] We first generate an ensemble of smaller-scale log

transmissivity fields having a specified statistical structure.
We then simulate slug-test head recovery data in each
realization using the numerical methods described in the
next section. We then invert the head recovery data as
described above (equation 2.10), to yield Ymeas and Smeas,
the slug-test measured log transmissivity and storage. For
each ensemble of smaller-scale log transmissivity fields, we
determine one power exponent w for the nonlinear filter
expression (2.4) and one value of w for the linearize filter
expression (2.5).
[26] To determine w for the nonlinear filter expression

(2.4), we fix the filter functions G to those that we
determined using the sensitivity method with homogeneous
parameters, and then choose that w which minimizes the
fitting error in the specified ensemble of realizations

X
ðYmeas � Y ðwÞÞ2; ð2:13Þ

where Y(w) is the log transmissivity determined using the
spatial filter (2.11) and the sum is over all members of the
ensemble. We evaluate the derived filter a posteriori by
cross plotting Ymeas versus Y(w) for several values of w,
including the optimal value, which is the value of w that
minimizes (2.13).
[27] To determine w for the approximate filter expression

(2.5), we follow the approach described by Desbarats
[1994]. For each realization of log transmissivity from an
ensemble of fields, we compute the log transmissivity
spatial average YV and variance S2

V and substitute them into
the approximate filter expression (2.5), along with the log
transmissivity determined for that realization by fitting the
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recovery data using (2.10), and solve for w. We average the
values of w over all realizations to define the optimal value
for the ensemble.

2.5. Numerical Methods

[28] We discretize the aquifer flow model using a stand-
ard radial-coordinate, implicit in time, finite-volume
approach, similar to that used by Brown et al. [1995]. We
place the nodes within the gridblocks according to the
geometry embedding theory of Narasimhan [1985]. The
well bore is simulated as gridblocks with transmissivity 5
orders of magnitude larger than the highest values found in
the mesh and a storage coefficient of rc

2/rw
2 . In addition, we

compute inter-gridblock conductances using the averaging
approach also presented by Narasimhan [1985]. In all
simulations in this paper, the grid has 81 gridblocks in the
angular direction and 81 gridblocks in the radial direction.
The radial dimension of the gridblocks grows geometrically
away from the well bore such that �ri = a�ri�1, where �ri
is the radial dimension of gridblock i, with i increasing
away from the borehole, and where a is a geometric factor,
which depends upon the storage coefficient. Constant-head
boundary conditions are assigned to the outer boundary. For
each value of storage, trial and error simulations were used
to determine an appropriate position for the outer boundary
(and the value of the factor a) such that when the constant
head boundary condition is replaced by a zero-flux con-
dition, the head in the well bore changes by less than 1 part
in 10,000 at any time step.
[29] We also numerically solve the one-dimensional

Cooper et al. [1967] model with spatially homogeneous
parameters (our so-called slug test model). We use the slug-
test model to invert the head recovery data generated from
the aquifer model and thus determine the slug-test measured
parameters. We use a high accuracy one-dimensional radial
discretization, a fine time discretization and the same finite-
volume method with geometry embedding and grid blocks
that grow in size away from the well bore that we use for the
aquifer model.
[30] We generate heterogeneous log transmissivity fields

for the radial grids using a method described in Appendix A.
With variable-sized gridblocks in the radial mesh, it is not
possible to avoid complex support-scale effects when gen-
erating the fields. When gridblock sizes vary, geostatistics
such as integral scale and spatial variance are not well
defined. Accordingly, the correlation properties of the gen-
erated fields only approximate the target values of the
corresponding single-support scale fields. Nevertheless, the
relative magnitude of correlation properties of the single
support-scale fields should be preserved using our methods
and should therefore not affect our conclusions about the role
of correlation scale on the value of the power exponent w.

3. Results

3.1. Homogeneous Aquifer

[31] We first present the filter functions determined when
the two dimensional aquifer is homogeneous. The homoge-
neous-parameter filter functions are symmetric with respect
to the angular coordinate direction and thus are plotted
versus dimensionless radial distance r/rw. The YY, SS, SY,
and YS filter functions are plotted in Figures 1–4 Part ‘‘a’’

of each figure shows the filter amplitude and part b shows
integrated filter weight, where the integrated weight at
distance r is equal to

R r
rw
Gðr0Þ2pr0dr0. In each figure, we

label the filter functions with the storage coefficient used to
determine the function. The YS filter functions have been
made dimensionless by multiplying by �S/log10T and SY
filter functions have been made dimensionless by multi-
plying by log10T/S.
[32] The support volume of the slug test can best be

appreciated by examining the integrated filter weights in the
‘‘b’’ panels of Figures 1–4. The range of the slug test is that

Figure 1. The YY filter functions, which show how small-
scale log transmissivity is averaged by slug-test estimated log
transmissivity. The filters are symmetric with angle q around
the pumping well, so only a profile is shown here. Each filter
is labeled by the storage coefficient used to determine the
filter. (a) Amplitude of the filter function plotted versus
dimensionless radial distance from the well, r/rw. Negative
values at small radius for the S = 10�1,10�2,10�3 and 10�4

filters are not plotted on the log scale. An r�2 trend line is also
plotted. As storage decreases the filters approach the steady
state r�2 behavior presented by Desbarats [1992]. (b)
Integrated filter weight,

R r
rw
Gðr0Þ2pr0dr0 versus dimension-

less radial distance from the well.
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distance where the integrated weight reaches a constant
plateau at large r/rw. The subsurface outside of that range
does not affect the parameter measured by the slug test. In
Figure 5 we plot the ranges of the YY filter versus S�0.5. We
also plot from Guyonnet et al. [1993] the distances at which
a head perturbation at the well dissipates to either 1% or 5%
of its initial value. The slug-test range is bounded by these
two dissipation distances.
[33] The total integrated weight of the filter indicates

whether there is bias in the slug-test parameter estimation.
The plateau values of the YY filter functions (Figure 1b) are
between 1.001 and 1.004, indicating that these filters are
essentially mean preserving.
[34] It is interesting that as the storage coefficient

decreases, the YY filter functions in Figure 1 approach the

r�2 weighting proposed byDesbarats [1992] for steady state
flow conditions. However, near the well bore at r/rw = 1, the
YY filter functions for S = 10�1, S = 10�2, S = 10�3 and S =
10�4 take on negative values, which are not plotted in Figure
1a (because of the logarithmic scale) but are apparent in
Figure 1b.
[35] The negative values of the YY filter function (Figure 1)

near the well result from the interaction between estimated
transmissivity and storage. We can demonstrate this by
computing YY filter functions with storage fixed and known,
in contrast to all other results in this paper, where both storage
and transmissivity are inverted from the recovery data. If we
know storage, then we set to zero the storage sensitivities in

Figure 2. The SS filter functions, which show how small-
scale storage coefficient is averaged by slug-test estimated
storage coefficient. The filters are symmetric with angle q
around the pumping well, so only a profile is shown here.
Each filter is labeled by the storage coefficient used to
determine the filter. (a) Amplitude of the filter function
plotted versus dimensionless radial distance from the well,
r/rw. An r�0.5 trend line is also plotted. (b) Integrated filter
weight,

R r
rw
Gðr0Þ2pr0dr0 versus dimensionless radial dis-

tance from the well.

Figure 3. The SY filter functions, which show how small-
scale transmissivity affects slug-test estimated storage
coefficient. The filters are symmetric with angle q around
the pumping well, so only a profile is shown here. Each filter
is labeled by the storage coefficient used to determine the
filter and have been normalized by multiplying by log10T/S.
(a) Amplitude of the filter function plotted versus dimen-
sionless radial distance from the well, r/rw. An r

�2 trend line
is also plotted. (b) Integrated filter weight,

R r
rw
Gðr0Þ2pr0dr0

versus dimensionless radial distance from the well.

26 - 6 BECKIE AND HARVEY: WHAT DOES A SLUG TEST MEASURE



(2.12). The resulting known-storage filter functions are
shown in Figure 6. The filters are positive everywhere and
follow an almost exact r�2 behavior, corresponding to the
filters used by Desbarats [1994]. Indeed, the negative values
of the YY filter function cannot be explained if log trans-
missivity alone were to contribute to the slug-test measured
log transmissivity. It would imply that where the filter is
negative, a more conductive zone would lead to a lower
estimated transmissivity. In field settings, the storage is not
known a priori, and hence the filters computed assuming
fixed storage are not appropriate. Later in the paper, we show
how these parameters interact in the inverse procedure by
analyzing a two-zone slug-test model.

[36] In Figure 2b the plateau values of the SS filter
functions are all greater than one, indicating a bias in the
slug-test estimate of storage from head-recovery data. The
bias increases as the storage coefficient decreases. These
results can be interpreted to say that small-scale deviations
in storage from some base-case value are amplified in the
storage value estimated from slug-test data. Similarly, the
dimensionless SY filters in Figure 3, which describe the
effects of small-scale transmissivity on the measured storage
coefficient, show a very strong influence of transmissivity
on storage. We show later that high values of transmissivity
are associated with anomalously high values of storage, and
low values of transmissivity are associated with anoma-
lously low values of storage.
[37] The influence of storage on the measured log trans-

missivity is shown in YS filters (Figure 4). These filters
integrate to essentially zero (Figure 4b), indicating that
small-scale storage has a relatively weak net effect on
measured transmissivity value.

3.2. Heterogeneous Aquifer

[38] In this section we examine how well the nonlinear
power average filter expression, (2.4) and its approxima-
tion (2.5) predict log transmissivity values measured by
an analysis of slug test data. We also investigate the
relationship between the power averaging exponent w and
the integral scale of the smaller scale log transmissivity
field.
[39] We analyze 73 different ensembles of log trans-

missivity fields, each ensemble with a specified statistical
structure and containing at least 80 realizations. Realiza-
tions on a radial grid are generated as described in the
appendix from single-support scale source fields that are
defined on a rectangular grid. All the single-support scale
fields are in turn generated with isotropic exponential

Figure 4. The YS filter functions, which show how small-
scale storage affects slug-test estimated transmissivity. The
filters are symmetric with angle q around the pumping well,
so only a profile is shown here. Each filter is labeled by the
storage coefficient used to determine the filter and have
been normalized by multiplying by �S/log10T. (a) Ampli-
tude of the filter function plotted versus dimensionless
radial distance from the well, r/rw. Trend lines of r�0.5 and
r�2 are also plotted. (b) Integrated filter weight,R r
rw
Gðr0Þ2pr0dr0 versus dimensionless radial distance from

the well.

Figure 5. The slug test range versus radial distance from
the well, where the range is defined in two ways: as the
distance a specified percentage of the initial perturbation in
the slugged well travels according to Guyonnet et al. [1993]
and as the distance where the integrated weight of the filter
function plateaus to a constant value (Figure 1b).
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covariance functions that have specified integral scale l and
variance s2

Y. The integral scale that we assign to each radial-
grid ensemble is the one used to generate the single-support
scale source realizations. In the results that follow, we report
l/ra, the integral scale normalized by the range of the filter
function ra, which is plotted in Figure 5 and depends only
upon the value of the storage coefficient and the well bore
storage. Storage coefficient values that we use range from
10�1 to 10�5 (Table 1).
[40] In Figure 7 we plot transmissivity measured by the

inversion of slug test response data with the Cooper-
Bredehoeft-Papodopolus model (the ‘‘true’’ slug-test trans-
missivity) versus the transmissivity predicted with the
spatial filtering expression (2.4) using the optimal power
exponent w and the filter function corresponding to the
storage value used to simulate the slug tests. Table 1
provides some of the statistical properties of the correspond-
ing ensembles. The value of normalized integral scale l/ra

increases from l/ra = 0.06 in Figure 7a to l/ra = 35.0 in
Figure 7f.
[41] We find that the power exponent is a function of the

normalized integral scale of the log transmissivity field, l/
ra. In Figure 8 we plot the power exponent w versus the
normalized integral scale l/ra for all 73 ensembles, where
each point represents at least 80 realizations. For values of
normalized integral scale less than 0.1, the power exponent
is approximately between �0.19 and �0.1, indicating
dominantly geometric averaging (i.e., w = 0). As l/ra grows,
the power exponent grows to a maximum of w = 0.35. There
is considerable scatter at larger values of l/ra.
[42] The sensitivity of the fits to the value of the power

exponent can be seen in Figure 9, which shows the
measured transmissivity plotted versus the transmissivity
predicted with the spatial filtering expression (2.4) using
several values of the power exponent w, including the
optimal value. These plots show data from the same
realizations as found in Figure 7. The plots show a strong
effect of the power exponent on the fit when the normalized
integral scale is small. At large values of the integral scale
(e.g., Figure 9f), the power exponent has little effect, as
indicated by relatively good fits at all values of w. Figure 10
is a cross plot of the power exponent computed using the
approximate filter (2.5) and the filter (2.4). The figure
shows a very good correspondence between the power
exponent computed for the approximate filter and the non-
linear filter. This suggests that the computed power expo-
nents are not strongly affected by fitting artifacts, since the
power exponent was determined in a different way for each
filter.

4. Storage-Transmissivity Interaction

[43] A surprising result in Figure 1 is the negative values
of the log transmissivity filter function when the storage
coefficient is large. Here we examine the interaction
between storage and transmissivity near the well bore by
comparing late-time approximations of the analytical sol-
ution of the Cooper et al. [1967] model (homogeneous
parameters) with that of the finite skin thickness slug-test
model of Moench and Hsieh [1985] (two-zone model). We
develop the Laplace domain late time approximations to
these models in Appendix B, equations (8.7) and (8.8). The
Moench and Hsieh [1985] model includes a finite thickness
skin of transmissivity T1 that extends to a radius r0 from the
well bore, beyond which the transmissivity has the value T2.

Figure 6. The YY filter functions here computed for the case
where storage coefficient is fixed and known (cf. Figure 1).
(a) Amplitude of the filter function plotted versus dimension-
less radial distance from the well, r/rw. An r�2 trend line is
also plotted. (b) Integrated filter weight,

R r
rw
Gðr0Þ2pr0dr0

versus dimensionless radial distance from the well.

Table 1. Statistics and Results for Ensembles Used to Produce

Figures 7 and 10a

Ensemble l/ra S wopt slnT
2 SV

2

a 0.06 10�4 �0.171 10.6 7.93
b 0.15 10�4 �0.097 10.6 6.07
c 0.25 10�3 �0.056 10.6 6.05
d 1.25 10�4 �0.077 10.6 5.76
e 10.0 10�3 +0.185 10.6 4.76
f 35.0 10�2 +0.345 10.6 4.76

aEach ensemble contains a minimum of 80 realizations. slnT
2 is the spatial

variance of the single support scale ensemble used to create the radial grid
ln T fields (see Appendix A).
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Figure 7. Cross plots of transmissivity estimated by analysis of slug-test recovery data (‘‘true’’ slug-test
transmissivity) versus transmissivity computed using the power spatial filter. Each point corresponds to
one realization of a random field, and each figure (a–f ) corresponds to a different ensemble. Ensemble
statistics and the storage coefficient used for the simulations are provided in Table 1.
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[44] At late times, both models have the same basic form
with the following correspondence:

Homogeneous parameters Two zone
T T2

S S r0

rw

� 
�2ðT2=T1�1Þ

[45] Since the approximations (8.7) and (8.8) in Appen-
dix B are of the same form, they can mimic each other.
When the transmissivity near the well is lower than the
transmissivity far from the well, the head response can be
mimicked by a system with uniform transmissivity equal
to the transmissivity far from the well and a much smaller
storage coefficient. When the transmissivity near the well
is higher than the transmissivity far from the well, the head
response can be mimicked by a system with uniform
transmissivity equal to the transmissivity far from the well
and a large storage coefficient S.
[46] Our simulations show these two effects quite clearly.

Figure 11 is a scatterplot of the storage coefficient versus
transmissivity estimated from head response data using the
Cooper et al. [1967] model with homogeneous transmis-
sivity. The head response data is produced by simulations in
heterogeneous transmissivity fields. The plotted storages
and transmissivities come from a combination of a number
of ensembles where the true storage coefficient is 10�4 and
the estimated storage is bounded in the estimation routine to
be between 10�9 and 100. As can be seen in Figure 11, low
values of estimated storage coefficient are associated with
low values of transmissivity and high values of estimated
storage coefficient are predominantly associated with high
values of transmissivity.
[47] The interaction between storage and transmissivity

of the inner zone can be quantified using the late time
approximations presented in Appendix B. If the homoge-
neous parameter model is used to analyze the late time
solution of the two zone model, then the estimated S,
denoted Sest, is related to the true S through the correspond-

ence given above. Taking logarithms and rearranging, we
have,

lnðSestÞ ¼ ln S
r0

rw

� �2
" #

� 1

T1
ln

r0

rw

� �2T2
" #

: ð4:1Þ

If r0, rw, and T2 are kept fixed, then the above equation
shows that ln(Sest) is negatively correlated to 1/T1.
[48] This correlation explains the negative values of the

spatial filters computed when both T and S are simulta-
neously estimated (Figure 1). When the head response is fit
with both parameters free to vary, the storage value com-
pensates for the transmissivity. It can be seen in Figure 1b
that this effect is only significant for large storages and very
near the well.

5. Discussion

[49] Our results in Figure 8 show that the power
exponent depends upon the integral scale of the trans-
missivity field. However, Figure 9 shows that geometric
averaging (w = 0) provides a good fit for all ensembles
and for all storage values we examine between S = 10�1 to
S = 10�7 (results not shown). Our results are in accord
with the geometric averaging employed by Desbarats
[1992], and consistent with well-established bounds for
uniform radial flow in two dimensions [Cardwell and
Parsons, 1945]. Indeed, Desbarats [1994] introduces the
power exponent to account for three-dimensional flow
effects. For two-dimensional transient flow considered
here, a power exponent of w = 0 is probably adequate
for most applications given the uncertainty in the value of
l/ra, the integral scale of the transmissivity field. In
situations where there are significant three-dimensional
flow effects during the slug test then a power law filter
may be necessary.
[50] We should note that we find no relationship between

the power exponent and the spatially filtered variance of the
log transmissivity field SV

2. In Table 1, SV
2 decreases with

increasing integral scale l/ra. This trend can be explained
by the approximate r�2 weighting in the definition of the
spatially filtered variance. As l/ra increases, the field
becomes smoother near the well, which receives the largest
weight in the SV

2 computation. The realizations used for
Figures 7 and 9, summarized in Table 1, are all strongly
heterogeneous where the variances of the single-support
scale fields are all slnT

2 = 10.6.
[51] The shape of the filter function is primarily affected

by the dynamics of the slug test and the inverse method-
ology. The quantity and type of fitting data and the
number of parameters in the inverse procedure affect the
filter function. In this work, the filters in Figures 1–4 and
6 are computed with data collected over the entire slug-test
response, from early time until the dimensionless displace-
ment in the well bore Hwb(t)/Hwb(0) is less than 10�2.
Using early or late time data only, would lead to a
different filter shape, and the effect of reducing the number
of parameters by fixing the storage is evident by compar-
ing Figures 1 and 6.
[52] While our analysis supports the observation that

storage is poorly estimated by the slug test, the effect of
storage on transmissivity estimates is more subtle. The most

Figure 8. Power exponent versus the ratio of characteristic
scale of heterogeneity to the scale of the averaging volume.
Each point represents a power exponent determined from a
minimum of 80 realizations.
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Figure 9. The same cross plots as found in Figure 7. To show the sensitivity of the power spatial filter
to the power exponent w, the plots here include transmissivities determined using the power spatial filter
with the power exponent set to w = �1, 0, + 1, in addition to the optimal values. Each point corresponds
to one realization of a random field, and each figure (a–f ) corresponds to a different ensemble. Ensemble
statistics and the storage coefficient used for the simulations are provided in Table 1.
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important effect is that on the YY filter functions in Figures
1 and 6. As storage decreases the support volumes of the YY
filters increase. A second and smaller effect is through the
YS filter function. Indeed, according to spatial-filter model
(2.4), slug-test log transmissivity can be estimated from the
smaller scale transmissivity by (for w = 0)

Y ðxÞ ¼
Z
V

GYY ðx� x0Þyðx0Þdx0 þ
Z
V

GYSðx� x0Þsðx0Þdx0: ð5:1Þ

In our investigation of heterogeneous aquifers, we are able
to drop the second term since storage was spatially
homogeneous and the YS filter in Figure 4b integrates to
zero. If storage is not spatially homogeneous, then the
smaller-scale storage will affect the value of the estimated
log transmissivity through the YS term in (5.1) above, but
the net effect still should be small, as the YS filter integrates
to zero.
[53] The filtering approach we present here can be

applied to estimation problems. The filter then provides a
relationship between parameters measured on two different
scales. Using the filtering relationship it is possible to
develop estimation schemes where parameters measured
on one scale are used to constrain parameter estimates on
another scale [Desbarats, 1994].

6. Conclusions

[54] The measurement of transmissivity by the analysis of
slug-test head-response data from a fully completed well in
a confined aquifer can be represented as a weighted spatial
power average of the log transmissivity proximal to the
well. In our approach, the weighting is given by spatial
filters that are functions of the aquifer storage. The power
exponent of the power average depends upon the ratio of the
integral scale of the log transmissivity field, l to the ra, the
range or characteristic size of the filter functions. The power
exponents that produce the best fit between the measured
transmissivity and that predicted with the spatial filter, take

values from w = �0.19 to w = 0.345, increasing as the ratio
of heterogeneity size to slug-test averaging size l/ra
increases. Even so, relatively good fits can be obtained for
all fields with the power exponent of w = 0, which
corresponds to geometric averaging. The fully nonlinear
power averaging expression is also well approximated by an
expression originally developed by Desbarats [1992], and
which can be used in geostatistical estimation problems.
[55] Our results are somewhat encouraging for the use-

fulness of slug tests to estimate transmissivities, but indicate
the dubious value of slug tests for estimating storage
coefficients. The estimated transmissivity is unbiased, and
is less sensitive to near-well heterogeneities in transmissiv-
ity because the estimated storage accounts for much of the
effects of these near-well heterogeneities. The transmissivity
estimate does not appear to be strongly influenced by
storage coefficient properties. In contrast, the storage coef-
ficient is strongly influenced by the transmissivity and the
estimated storage is biased.
[56] The spatial filter functions provide insight into the

volume measured by a slug test, but their application to field
tests poses a dilemma: the filter function depends strongly
upon the storage coefficient of the aquifer, yet the slug-test
estimate of the storage coefficient is not likely to be correct.
Thus the filter function may best be selected using inde-
pendently estimated storage coefficients.

Appendix A

[57] In this appendix we describe the method we use to
generate heterogeneous log transmissivity fields for a radial
coordinate grid. We first generate a 2048 � 2048 log
transmissivity field with square gridblocks and a prescribed
correlation structure using a Fast Fourier Transformation
technique [Fenton, 1990]. We then essentially map this field
onto the radial grid using the following algorithm.

Figure 10. A cross plot showing the power exponent
determined using the nonlinear power spatial filter expres-
sion versus the approximate spatial filter expression.

Figure 11. A cross plot showing estimated storage versus
estimated transmissivity for a number of realizations where
the true storage is 10�4. Each point corresponds to a slug
test analysis of data simulated in a different realization of
the transmissivity field.
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[58] We determine the radial and angular coordinates of
the center of each the gridblock of the square grid from an
origin at the center of the square grid. We then determine
the gridblock of the radial grid that contains those coor-
dinates and assign to that gridblock the value of log
transmissivity from the square grid. Larger gridblocks of
the radial grid may contain the center of many gridblocks
from the square grid. In that case, the log transmissivity
values from those square gridblocks are arithmetically
averaged (or the transmissivity values are geometrically
averaged). Where radial gridblocks are small near the well,
some radial gridblocks are not assigned log transmissivity
values after all the gridblocks from the square grid have
been mapped. To those gridblocks we assign the log
transmissivity value from the gridblock of the square grid
that contains the coordinates of the centroid of the unas-
signed gridblock from the radial grid. As the square grid is
typically somewhat smaller than the radial grid, some
gridblocks of the radial grid at large radius also remain
unassigned after each gridblock of the square grid is
mapped. These unassigned distal gridblocks are assigned
the average log transmissivity value of the square grid.
[59] The algorithm is admittedly a crude mapping.

Alternatively, there are more elaborate approaches. One
could define a statistical structure of a log transmissivity
field at some fine scale. If radial gridblock log trans-
missivities were considered spatial averages of that fine-
scale log transmissivity, then the local averaging theory
presented by Vanmarcke [1983, chap. 6] could be used to
determine the correlation between each pair of local
averages of log transmissivities. The resulting covariance
matrix could be used to generate realizations on the radial
grid using the L-U decomposition method of Alabert
[1987]. This general approach is not practical for the large
81 � 81 gridblock grid that we use here, and would not
avoid the variable support scale problem that is encoun-
tered on the radial grid.

Appendix B

[60] In this appendix, we develop late time approxima-
tions for the Laplace domain solutions to the Cooper et al.
[1967] homogeneous parameter model and the two-zone
model of Moench and Hsieh [1985]. Cooper et al. [1967]
provide the following Laplace domain solution to their
model, given by equations (2.6)–(2.9),

�hwbðpÞ
Hwbð0Þ

¼ K0ðbÞ=p
K0ðbÞ þ 2a

b K1ðbÞ
; ð8:1Þ

where �hwb is the Laplace domain well bore head solution, p
is the Laplace domain coordinate, K0 and K1 are modified
Bessel functions of the second kind of zero and first order,
respectively, a ¼ S rw

rc

� 
2
and b ¼ rw

ffiffiffiffi
pS

T

q
.

[61] The Laplace domain solution to the two-zone model
of Moench and Hsieh [1985] is

�hwbðpÞ
Hwbð0Þ

¼ A �1K0ðB1Þ ��2l0ðB1Þ½ �=p
C1�1 � C2�2

; ð8:2Þ

where

C1 ¼ AK0ðB1Þ þ B1K1ðB1Þ; ð8:3Þ

C2 ¼ Al0ðB1Þ � B1l1ðB1Þ; Þ ð8:4Þ

�1 ¼
T2

T1
l0ðB1r

0
dÞK1ðB2r

0
dÞ þ

ffiffiffiffiffi
T2

T1

r
l1ðB1r

0
dÞK0ðB2r

0
dÞ; ð8:5Þ

�2 ¼
T2

T1
K0ðB1r

0
dÞK1ðB2r

0
dÞ þ

ffiffiffiffiffi
T2

T1

r
K1ðB1r

0
dÞK0ðB2r

0
dÞ; ð8:6Þ

and where A ¼ pr2c
2T1
; B1 ¼ rw

ffiffiffiffi
pS

T1

q
B2 ¼ rw

ffiffiffiffi
pS

T2

q
; rd

0 = r0/rw, l0, l1
are the first and second order of the modified Bessel
functions of the first kind.
[62] Late time approximations (t ! 1 or p ! 0) to these

solutions can be developed by using asymptotic approxi-
mations to the Bessel functions [e.g., Sageev, 1986], K0(x)
! �ln(x), K1(x) ! 1/x, l0(x) ! 1 and l1(x) ! x/2. The late
time approximation to the Cooper et al. [1967] model is

�hwbðpÞ
Hwbð0Þ

¼
ln rw

ffiffiffiffi
pS
T

q� �

p ln rw

ffiffiffiffi
pS
T

q� �� �
� 2T

r2c

: ð8:7Þ

[63] We produce a late time approximation to the two
zone model of Moench and Hsieh [1985] substituting the
asymptotic forms of the Bessel functions and by neglecting
terms of order p in comparison to terms of order ln(p), terms
of order p2 in comparison to terms of order p and Last, rw
and r0 are neglected in comparison to rc

ffiffiffi
S

p
. Neglecting r0 in

comparison to rc
ffiffiffi
S

p
implies that the thickness of the inner

zone must be small in comparison to the ratio of well bore
storage to aquifer storage. The resulting late time approx-
imation is

�hwbðpÞ
Hwbð0Þ

¼
ln rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS
T2

r0

rw

� 
�2T2=T1�1
r !

p ln rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pS
T2

r0

rw

� 
�2T2=T1�1
r !

� 2T2
r2c

( )
:

ð8:8Þ
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