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Field data are tainted by random and several types of systematic errors. The paper presents a review of interpretation methods
for falling-head tests. The statistical robustness of each method is then evaluated through the use of synthetic data tainted by
random error. Six synthetic datasets are used for this evaluation. Each dataset has an average relative error for water elevation Z,
respectively, of 0.04%, 0.11%, 0.22%, 0.34%, 0.45%, and 0.90% (absolute errors on elevation are, respectively, 0.10, 0.25, 0.50, 1.0,
and 2.0 mm for a range of water elevation change of 150 mm during test). Each synthetic dataset is composed of 40 synthetic tests
(each test consisting of 18 data couples of synthetic falling-head measurements). Results show that the Z-t method is the most
accurate and precise, followed by the Hvorslev method when a correction is applied and the velocity method when appropriately
interpreted. Advice on how to interpret falling-head tests tainted by random error concludes the study.

1. Introduction

A number of methods exist to measure saturated hydraulic
conductivity of soils. The constant head test [1, 2] is one of
these methods. In a laboratory setting, water inlet and outlet
need to be maintained at constant elevations. Measurements
of water flow rate in function of hydraulic gradient (head
loss per flow path distance) allow the computation of the
hydraulic conductivity of the soil using the following equa-
tion:

k = − QL
(h2 − h1)A

, (1)

where Q is the flow rate, L is the distance separating the two
piezometer measuring tips, hj are measured heads at measur-
ing tips 1 and 2, and A is cross-section of the permeameter.
ASTM [1, 2] is a good source for permeameter design
and testing methodologies. When performing hydraulic con-
ductivity tests in the laboratory, Chapuis et al. [3] stress
the importance of good saturation. They describe a testing
protocol to reach and measure saturation levels of tested
samples.

Constant head tests can also be performed in the field.
CAN/BNQ [4, 5] describe methods where water is injected in

a cased borehole at a constant head in an aquifer or aquitard
under steady state conditions [6]. Hydraulic conductivity can
then be computed by using

k = − Q

C(h2 − h1)
, (2)

where C is a shape factor that is, for example, 2.75 times the
inner diameter D for an end of casing test, h1 is the total head
of water in the cased borehole, and h2 is the total head of the
free surface (or piezometric level) of the tested soil layer. This
method is based on the hypothesis that the injected volume
of water will have negligible influence on the piezometric
level (PL) of the soil surrounding the injection zone.

When testing low hydraulic conductivity soils, the main
drawbacks of constant head tests are that they are extremely
lengthy in time, and, in the case of field tests, the PL of the
soil layer may be unknown or difficult to measure. Falling-
head tests are effective answers to both these drawbacks. They
can be completed in a short-time span and Chapuis et al. [7]
demonstrated that their interpretation does not necessitate
the PL of the surrounding soil layer.

Field (and laboratory) data are generally tainted with
measurement errors. These are of two types, systematic and
random errors. A systematic error is, for example, created to
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the total head by incorrect calibration of a piezometer. This
type of error can be constant in time or can follow some sort
of time drift. Random errors are characterized by a zero mean
and some standard deviation. These errors are the result of a
number of phenomena. Human reading of a standpipe scale
and white noise due to electrical interference in piezoelectric
transducers are examples. Piezoelectric transducers also yield
step-wise data due to conversion of analog values to digital
code. Measurements are then higher or lower than true
values.

This paper will review the theoretical background for the
interpretation of falling-head tests when in presence of ran-
dom errors. Five (5) interpretation methods are presented:
log (or Hvorslev), traditional interpretation of velocity
(or Chapuis), alternate interpretation of velocity, Z-t and
optimised log (or corrected Hvorslev). Each method will be
applied on synthetic datasets. Data within each set includes
a random error component of predefined variance. The
object will be to evaluate how each interpretation method
is sensitive to random measurement error. A comparison
between methods and a discussion on the interpretation of
falling-head tests will follow.

2. Interpretation of Falling-Head Tests

Data from falling head tests, be they obtained in the
laboratory or in the field, may be interpreted by a number of
methods. Chapuis [8] indicates that when the deformations
of the soil can be neglected, falling-head tests are governed by
the Laplace equation. Its solutions, the harmonic functions,
have several properties. One of them relates flux into the soil
(Qsoil) to flow into the pipe (Qinj) through a mass-balance
equation:

Qinj = Qsoil = ckH , (3)

where c is a shape factor that depends on the geometry of
the injection zone and on the hydraulic boundaries of the
problem, H is the applied hydraulic head difference, and k
is the hydraulic conductivity. This equation is the starting
point of the Hvorslev, velocity (Chapuis), and Z-t methods.
Another equation is the starting point of another method for
cases where the soil deformation is assumed to be elastic and
not negligible [9]. However, this method contains physical
and mathematical confusions according to the mathematical,
physical, and numerical proofs by Chapuis [8] and the
experimental proofs of Chapuis and Chenaf [10]. According
to the equations of Chapuis [8], the effect of soil deformation
can be neglected when the soil is an aquifer or an overconsol-
idated aquitard. It is no longer negligible for compressible
aquitards when they are tested using either a falling-head
test with a very small injection pipe or a pulse test between
packers. Chapuis and Cazaux [11] gave suggestions on how
to correctly handle the instantaneous (elastic) and delayed
deformations in such cases. In a falling-head test, Qinj is the
flow through the inflow pipe (often a standpipe connected to
the borehole casing) of internal cross-section Sinj:

Qinj = −Sinj
dH

dt
, (4)

where t is time. Equations (3) and (4) yield

dH

dt
= − c

Sinj
kH. (5)

Rearranging gives

dH

H
= − c

Sinj
kdt. (6)

Integrating leads to the solution proposed by Hvorslev [12]:

ln

(
Hj

Hj+1

)
= −kC

(
t j − t j+1

)
, (7)

where Hj is the instantaneous head loss at time t j obtained
from the difference between the total heads in the inlet
standpipe and PL at the boundary of the surrounding
soil, and C = c/Sinj is a shape factor that depends on the
inlet/outlet geometry. Hvorslev [12] compiled shape factors
for a number of inlet/outlet geometries. For field conditions
illustrated in Figure 1, shape factor C is

C = 11D
πd2

, (8)

where D and d are, respectively, the internal diameters of
the casing and of the standpipe. For laboratory falling-head
tests, C is given by

C = A

aL
, (9)

where A is the area of the permeameter cross-section, “a”
is the cross-section of the inlet standpipe, and L is the flow
distance through the soil sample. In the laboratory, the
outlet is a constant head basin controlled by an overflow
weir. In the field, the outlet head is set by the geometry and
the boundary conditions of the surrounding soil, that is, the
PL. In the laboratory, it is relatively easy to accurately and
precisely measure the outlet piezometric head. In the field,
an accurate measure of the PL of the surrounding soil is not
necessarily trivial. An error in the PL value will introduce a
bias or systematic error of constant value in head difference
Hj of (7). Chapuis [13] showed that this systematic error
will produce a curved ln(H) versus time plot. Since the
hydraulic conductivity k is the slope of this plot, a curved
plot wrongly suggests that k changes with time. A concave
downward curve suggests that k increases during the
duration of the test. If the test is repeated assuming the same
systematic error in the PL of the surrounding soil, the same
curved plot will be observed. Chiasson [14] mathematically
demonstrated that when the systematic error in the PL of the
surrounding soil is not zero (i.e., H0 /= 0), the relationship
between hydraulic conductivity and the slope of the plot as
expressed by (7) is no longer valid. Thus the direct use of (7)
as proposed by Hvorslev without questioning the PL value is
faulty practice [13]. Chiasson [15], furthermore, concludes
that Hvorslev’s equation is incomplete and proposes a
correction to this method and an interpretation through log
optimization. This is described later in the paper.
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Figure 1: Setup for a falling-head test in an unconfined aquifer (or
aquitard).

2.1. Traditional Interpretation of the Velocity Plot. The veloc-
ity method proposed by Chapuis et al. [7] is one where
the unknown PL of the soil is not needed for hydraulic
conductivity determination. Therefore, a systematic error in
the assumed PL has no consequence in computations ([16]
as quoted by [13]). For this method, the following definition
is first introduced:

H(t) = Z(t) + H0, (10)

where H0 is the vertical distance between Z(t), the elevation
above ground of the inlet falling water level within the
standpipe, and the PL of the surrounding soil (Figure 1). If
Z(t) is erroneously assumed as the total head loss between
inlet and the PL of the soil, H0 can be seen as the systematic
error, or bias. Rearranging (5) using (10) then gives

Z = − 1
Ck

dZ

dt
−H0 = mv

dZ

dt
−H0. (11)

By plotting y = Z as a function of x = v = dZ/dt, a
straight line should be obtained with slope mv = −1/Ck and
intercept H0. Thus, the slope of this plot is related to k by

k = − 1
mvC

. (12)

Choosing Y = Z and X = v defines the traditional velocity
plot. Modern spreadsheets permit to easily compute the slope
mv using the least squares method, a best linear unbiased
estimator (BLUE).

The velocity plot has many advantages. A part from
estimating hydraulic conductivity, it can be used to graphi-
cally obtain the systematic error (if any) of the assumed PL,
identify hydraulic fracturing during the test ([7, 17, 18] in
piezometers) or consolidation at the beginning of the test of
the soil surrounding the tip of the borehole [8, 19], and even
identify leakage in buried pipes [20].

2.2. Alternate Interpretation of the Velocity Plot. Interpre-
tation of the velocity method using the method of least
squares should yield the best unbiased linear fit. Chiasson
[15] underlined that statistical estimation by least squares
is theoretically based on one dependant variable being a
function of another that is independent. The independent
variable is a controlled variable; that is, it is the user that
decides at which value a measurement of the dependant
variable will be made. Thus, by definition, the independent
variable has no measurement error.

In the traditional interpretation of the velocity method,
velocity v during a time increment Δt is considered as the
independent variable and the average elevation Zm = (Zj +
Zj+1)/2 during the same time increment is the dependent
variable. When data has low scatter in Z (or t), this has
little effect on the result. When data has some scatter in Z
(or t), Chiasson [14, 15] shows that interpretation problems
arise! The act of choosing v as the controlled variable when
it has high statistical scatter clearly departs from least square
estimation theory.

Between variables v and Zm, Zm displays the least
measurement error. One could thus choose to consider Z
as the control variable and time t could be measured at a
certain value of Z. With Zm as the control variable, velocity
v = ΔZ/Δt is the dependant variable. This makes more sense
since by definition velocity v is a function of elevation Z and
time t, that is, it is dependent on Z and t. Rearranging (11)
to isolate v on the left hand side gives

v = dZ

dt
= −CkZ − CkHo = mZZ + bZ. (13)

From (13), the hydraulic conductivity k and the bias H0 are:

k = −mZ

C
, (14)

H0 = bZ
mz

. (15)

2.3. Z-t Method. A third method proposed by Chiasson [14]
plots raw elevation data Z as a function of time t. The
solution for (6) using (10) is as follows (see Chiasson for
demonstration):

Z = Hie
−at −H0, (16)

where Hi is the head difference at initial time t j = t0 = 0 and
“a” is an exponent parameter where

k = a

C
. (17)

Let Zj be the measurement of Z at time t j , for j = {0, . . . n},
and let Z∗(t j) be the estimated water level in the standpipe
at time t j , using estimated parameters Hi

∗, a∗, and H∗
0 . The

best unbiased estimator will then be obtained by numerically
minimising the following equation:

MIN

⎛
⎝ n∑

j=0

[
Zj − Z∗

(
t j
)]2

⎞
⎠ (18)
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while being subjected to the unbiased condition:

n∑
j=0

[
Zj − Z∗

(
t j
)]
= 0. (19)

2.4. Correction to the Hvorslev Method or Optimised Log [Z +
H0] Method. In the traditional interpretation of Hvorslev’s
method, log(Hj/Hi) is plotted as a function of time t. In
doing this, Hvorslev made two implicit suppositions that H0

is known a priori and that the initial reading for Hi at time
t0 = 0 has no measurement error. Clearly, this can never
be perfectly the case. These two assumptions will only be
approximately true, the extent of the approximation being
a function of error. Chapuis [13] and Chiasson [14] show
how making these implicit suppositions will adversely affect
the interpretation of the test and the value of the hydraulic
conductivity k. The interpretation process could use the
velocity method to determine H0 and interpret the falling-
head test by rearranging (7) using (10) to obtain

ln
(
Zj + H0

)
= −kCtj + ln(Z0 + H0) (20)

and to plot y = ln(Zj + H0) in function of x = t. Unfor-
tunately, this approach is incomplete since it implicitly makes
the supposition that the initial reading at time t0 = 0 has
no measurement error. Since the error on the first reading
Z(t = 0) = Z0 is usually small, the initial solution Hi

of (16) is approximately equal to Z0 + H0. (where Z0 is
measured and H0 is estimated by the velocity method) Thus,
the hydraulic conductivity computed this way will generally
not be adversely affected. This interpretation is found to
yield hydraulic conductivity values that are always close to
being equal to the value obtained by the velocity method.
Since two methods give the same result, one could conclude
that this confirms the validity of the hydraulic conductivity
value. Chiasson [14] shows that if H0 and Hi are obtained
by another interpretation method, that is, the Z-t method,
interpretation of a falling-head test using (20) will give values
equal to those obtained by the Z-t method! This brings
Chiasson to conclude that (20) (Hvorslev’s method) with H0

estimated from another method (velocity or Z-t) cannot be
used to confirm the validity of the k value obtained by the
same other method (velocity or Z-t), since the value of k that
is obtained is dependant of the method used to estimate H0.

A remedy to this is to correct Hvorslev’s method by
estimating H0, Hi, and k by a least squares optimisation tech-
nique similar to the one used in the Z-t method. Rewriting
(20) with Hi = Z0 + H0, mln = −kC, and bln = ln(Hi) gives

ln
(
Zj + H0

)
= mlnt j + bln. (21)

Let then y∗ = ln(Z∗(t j) + H0) be the estimated natural
logarithm of the total head in the standpipe at time t j , with
estimated parameters b∗ln = ln(H∗

i ), m∗
ln = −k∗C, and

H∗
o . The best unbiased estimator will then be obtained by

numerically minimising the following equation:

MIN

⎛
⎝ n∑

j=0

[
yj − y∗

(
t j
)]2

⎞
⎠ (22)

while being subjected to the unbiased condition

n∑
j=0

[
yj − y∗

(
t j
)]
= 0. (23)

This variant of Hvorslev’s log method independently
estimates all unknown parameters. Theoretically, it can be
used to separately evaluate k and confirm values estimated
by both velocity and Z-t methods.

3. Performance of Interpretation Methods or
Their Statistical Robustness

The synthetic tests presented here correspond to conditions
encountered in overconsolidated aquitards such as com-
pacted clay liners (CCLs) used in solid waste cells. These
have hydraulic conductivities in the order of 1 × 10−6 mm/s
with a typical thickness of one metre. CCL are also very
rigid in nature due to the applied high energy compaction.
Both high rigidity and limited thickness minimize effects on
the local PL of immediate and delayed aquitard deformation
[21]. Furthermore, the velocity plot will yield a straight line
when pore water volume change is negligible [8] and straight
velocity plots are observed in tests performed on CCLs (see,
e.g., [14]).

The solution for differential equation (6) expressed by
(16) with Hi = 701 mm, H0 = 400 mm, and k = 5×10−7 mm/s
and a test setup giving a shape factor C = 235.3 mm−1 was
used to generate synthetic data as follows:

Z =
[

(701 mm)e−1.176×10−4t − 400 mm
]

+ ε, (24)

where ε is a normal law distributed random fluctuation
with zero mean and standard deviation σ = ΔZ/1.96. The
random fluctuation component corresponds to a synthetic
random measurement error. By definition, ΔZ is the absolute
error of the synthetic dataset composed of measurements
Z. Six synthetic datasets of increasing absolute error on Z
were generated this way. Absolute errors for each synthetic
dataset will be in increasing order ΔZ =: ±0.10 mm,
±0.25 mm, ±0.50 mm, ±0.75 mm, ±1.0 mm and ±2.0 mm.
Error relative to the range of elevation change (ΔZ/[Zmax −
Zmin]) thus spans from 0.07% to 1.3%. Each absolute error
dataset is composed of 40 synthetic tests with each test
composed of 18 synthetic measurements spanning from t =
0 to 2040 seconds. During each synthetic tests, elevation in
the standpipe drops by 150 mm. Note that in the experience
of the author, absolute errors of ±2.0 mm in datasets
obtained from cased borehole tests in compacted clay liners
are not uncommon (see, e.g., [14]).

Each method reviewed earlier is applied to these six
synthetic datasets to investigate their sensitivity to data
tainted by random measurement error.

3.1. Traditional Velocity Plot. As underlined earlier, when
measurement errors on Z are small, interpretation by least
squares of the traditional velocity plot will yield good results.
An illustration of this statement is given in Figure 2. In this
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Figure 2: Velocity plot of synthetic test data with very low meas-
urement error (ΔZ = ±0.10 mm).

plot, the measurement error on Z is only of ±0.10 mm.
Least squares yield mv = −8422.3 sec−1 (Figure 2), C =
235.3 mm−1, (12) gives k = 5.05 × 10−7 mm/s and H0 =
394.5 mm. Both hydraulic conductivity k and bias H0 are by
all practical means equal to the no-error-imposed solution of
H0 = 400 mm and k = 5 × 10−7 mm/s. This gives a relative
error of only 0.92% for k and 1.4% for H0.

When relative measurement error on Z is significant
(in the order of ΔZ/[Zmax − Zmin] = 0.7%), the velocity
plot displays considerable scatter (Figure 3). Such a plot will
suggest that data from the test are of questionable quality.
With the same shape factor and (12), one finds by least
squares mv = −2643.6 sec−1 giving a hydraulic conductivity
k = 1.61 × 10−6 mm/s and H0 = −28.8 mm. This is a
222% relative error on k and −107% relative error on H0.
Hence, relatively small measurement errors in elevation Z
yield appreciable estimation errors for k and Ho.

Chiasson [15] observes that interpretation by least
squares of the traditional velocity plot systematically gives
higher k values than the methods earlier presented. The six
synthetic datasets, generated by (24) with ΔZ: ±0.10 mm,
±0.25 mm, ±0.50 mm, ±0.75 mm, ±1.0 mm, and ±2.0 mm,
confirm this systematic bias (Figure 4). Also, as absolute
measurement error increases on Z, so does the average and
statistical scatter of the hydraulic conductivity obtained by
the velocity method. Thus, this method of interpretation, for
data subjected to measurement error, produces a systematic
bias in the interpreted k value.

There is a clear trend between measurement error on Z
and the hydraulic conductivity obtained from least squares
of the traditional velocity plot (average trend in Figure 4).
Furthermore, a good correlation is observed between the
relative error (Δk/k) on the value of k obtained by the
velocity plot and the coefficient of determination of the same
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Figure 3: Velocity plot of synthetic test data affected by measure-
ment error (ΔZ = ±1.0 mm).
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Figure 4: Scatter of hydraulic conductivity values as interpreted
by velocity method in function of absolute error ΔZ of synthetic
datasets.

plot (Figure 5). This further demonstrates that interpretation
by least squares of the traditional velocity plot is not
statistically robust. Based on this work and on Chiasson [14],
least squares of the traditional velocity plot must not be used
in a straightforward manner on raw data when scatter is
observed. That is when R2 is less than 0.92. Coefficients of
determination higher than this threshold will yield relative
errors on k below 10% (Figure 5).
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The above analysis shows that increasing statistical scatter
in the velocity plot decreases the slope of the least squares line
(and increases the interpreted k value). The value of intercept
H0 will as a consequence decrease in a concurrent fashion.
This result for the estimated slope value is in accordance
with a relationship between the true slope and the slope
estimated by least squares as presented by Snedecor and
([22] unfortunately, the coefficient of the relationship is often
difficult to determine). Thus, least squares of the traditional
velocity plot must not be used to extract the correct (or true)
piezometric level at the injection point when the coefficient
of determination R2 is below 0.92.

Velocity plot scatter can be reduced in cases where the
number of data couples is sufficiently high. In such cases,
Chapuis [21] proposes a five-step interpretation procedure
to reach this goal. When datasets are too small, least squares
of the traditional velocity plot must not be used to extract
k and H0. Nevertheless, It remains warranted to prepare a
velocity plot to confirm, as earlier underlined, that it is linear
and that no other phenomena intervenes during the test.

3.2. Alternate Interpretation of the Velocity Plot. An appro-
priate interpretation of the velocity method should be one
that uses as the X variable the measurement with minimal
error, reserving the role of Y to the other. The same
data that was plotted in Figure 3 is used to illustrate this
alternative interpretation. The permuted plot, where velocity
v is in function of average elevation of falling-head Zm, does
not yield a better correlation coefficient, since it measures
scatter and this is unchanged (Figure 6). The hydraulic
conductivity computed from this plot is on the other hand
significantly different (it is lower). Using (14), the same shape
factor C and the least square slope mZ (Figure 6) yields

v = −0.000104 Zm − 0.050344

R2 = 0.274948
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Figure 6: Permuted velocity plot for data of Figure 3 (synthetic test
data with ΔZ = ±1.0 mm).

k = 4.42 × 10−7 mm/s and H0 = 484 mm. With the
permuted plot, relative error on k has decreased to −11.6%
and to 21.0% for relative error on H0. This is a considerable
improvement in relation to the 222% relative error for
k and −107% relative error for H0 that was obtained
earlier with least squares of the traditional velocity plot.
Computed hydraulic conductivity values from this “alternate
interpretation” of the velocity method show no correlation
with test data scatter as characterised by the coefficient of
determination (Figure 7).

On average, the alternate interpretation of the velocity
method will yield good hydraulic conductivity values. On
the other hand, scatter in measurements, although less
problematic than with the traditional interpretation of the
velocity method, will still yield rather high relative errors
(Δk/k) for k (Figure 8). The alternate interpretation can thus
be qualified as being unbiased, that is, on average accurate
but not precise. Results from this study indicate that the
alternate interpretation should be used with caution when
data scatter in the velocity plot yields R2 less than 0.87.
Otherwise, relative error on the k value may be greater than
±10% (Figure 7). The same observations apply for intercept
H0 (Figure 9). When R2 is less than 0.87, it is recommended
to follow the five steps interpretation procedure proposed by
Chapuis [21] but using least squares on X-Y variables of the
alternate velocity plot.

3.3. Z-t Method. Chiasson [14] introduced this method after
observing that scatter in the velocity plot (likewise with the
permuted velocity plot) is inherent to the computation of
the velocity ([21] gives the equation of the relative error).
Chiasson thus proposes to use raw data, that is, [t j , Zj] data
couples, and directly plot them on a Z-t graph. Difference
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Figure 8: Scatter of hydraulic conductivity values obtained from
the alternate interpretation of the velocity method in function of
absolute error ΔZ of synthetic datasets.

in scatter amplitude is evident when comparing scatter in a
velocity plot (or permuted velocity) with scatter in a Z-t plot
(compare Figures 3 and 6 with Figure 10).

Applying the Z-t method to the same dataset earlier used
with traditional and alternate interpretations of the velocity
method gives k = 4.68 × 10−7 mm/s, H0 = 439.5 mm and
Hi = 739.9 mm. This corresponds to a relative error for k
of −6.4% and of 9.9% for relative error on H0. This is an
improvement comparative to earlier presented methods, be it
the traditional or alternate interpretation of the velocity plot.
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Figure 9: Scatter of intercept value (H0) obtained by the alternate
interpretation of the velocity method as a function of absolute error
ΔZ of synthetic datasets.
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Figure 10: Z-t plot for data of Figure 3 (synthetic test data with ΔZ
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The Z-t method is unbiased; that is, there is no significant
correlation with scatter intensity (Figure 11). It yielded
high coefficients of determination for the complete suite of
studied absolute errors, meaning that (16) well explains the
relationship between Z and t.

The Z-t method yields good hydraulic conductivity val-
ues and it is less sensitive to data scatter (Figures 11 and 12).
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1E − 07

1E − 06

1E − 05

0 1 2

H
yd

ra
u

lic
 c

on
du

ct
iv

it
y
k

(m
m

/s
)

Average trend

Solution (no error)

Maximum

Median

Minimum

Absolute error ΔZ (mm)

75

25th percentile

th percentile

Figure 12: Scatter of hydraulic conductivity values as interpreted by
Z-t method in function of absolute error ΔZ of synthetic elevations.

It is thus an accurate interpretation method. It is also a
precise method since relative error on k is of only 3.6%
when synthetic data has ΔZ = 0.25 mm and increases
by approximately the same increment for each 0.25 mm
increment to ΔZ. Results from this study indicate that the Z-
t method can be used even when absolute errors on Z are of
the order of 2.0 mm (ΔZ/Z = 1.3%) for which relative error
on k will be of 28.4%.

The same behavior is also observed for intercept values
H0, that is, no systematic error (accurate value). Relative
errors ΔH0/H0 are smaller than in both earlier discussed
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Figure 13: Scatter of hydraulic conductivity values as interpreted
by corrected Hvorslev method in function of absolute error ΔZ of
synthetic elevations.

methods although they are 1.6 times higher than hydraulic
conductivity relative errors Δk/k. Thus, the Z-t method gives
an accurate value for intercept H0 and gives the highest
precision.

3.4. Corrected Hvorslev’s Method or Optimised Log [Z + H0]
Method. Again, for the same dataset used for the other three
methods, the corrected Hvorslev method gives k = 4.40 ×
10−7 mm/s, H0 = 482.6 mm, and Hi = 783.1 mm. This
result for k is approximately equivalent in accuracy to the
Z-t value obtained earlier. Investigating the complete dataset
of synthetic data, results for k show some sensitivity to data
scatter, more than in the case of the Z-t method (Figure 13).
The method thus appears acceptable when ΔZ < 1.0 mm.
Higher absolute errors in Z appear to destabilise the method.
This is due to numerical optimisation which is less stable for
this method.

4. Calibration Error

In cases where the elevation of falling head tests is monitored
with a piezoelectric transducer, a bias will be introduced
if it is faultily calibrated (error in calibration is a type of
systematic error). Piezoelectric transducers are linear voltage
devices that convert voltage into a corresponding water
pressure. In such case, the relationship between faultily
calibrated readings and true elevations is

Z = ZB + mBZr , (25)

where Z and Zr are, respectively, the true and faulty
calibrated (biased) elevation of the water column, ZB and mB
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are constant and scale biases. Using (25), the true velocity (if
coefficients ZB and mB were known) would be

ΔZ

Δt
= mB

(
ZR, j+1 − ZR, j

t j+1 − t j

)
. (26)

This defines the relationship between true velocity (at left)
and faultily calibrated velocity (at right):

ΔZ

Δt
= mB

ΔZR

Δt
. (27)

According to (11), using (25), the relationship between faulty
velocity and faulty elevation of the water column is:

ZR = mv
dZR

dt
− (H0 + ZB)

mB
. (28)

This later equation shows that the plot of faulty elevation
in function of faulty velocity has the same slope as one
obtained from true elevation and velocity, that is, (11).
Then, according to (11), the faulty plot will give the correct
hydraulic conductivity. This is not the case for the intercept
value as can be viewed by comparing (28) and (11). Since the
intercept defines the piezometric level (Figure 1), the plot of
faulty calibrated readings will not yield a correct PL.

Since the same equations are used to prepare the
alternate velocity plot, the same conclusions will also apply.
Developing (15) with (25) will find the same results for the
Z-t method and (21) with (25) will yield the same for the
corrected Hvorslev method.

When the PL is of importance, and it is certainly often
the case, a verification of calibration needs to be performed.
If when performing the falling head test, the elevation of the
measuring tip of the piezoelectric transducer is noted, it is
then possible to back calculate the PL value after calibration
of the transducer in the laboratory. For the case of piezo-
electric transducers in open piezometers, a field comparison
between transducer readings and direct measurements of
water elevation will permit to obtain correct calibration.

5. Conclusion

Interpretation methods for falling-head tests were evaluated
for their sensitivity to measurement error in elevations
measurements of the falling water column. Least squares of
the traditional velocity plot are found to be the less appro-
priate approach for interpreting falling-head tests to evaluate
hydraulic conductivity, even when measurement errors are
relatively small. It tends to systematically overestimate the
true hydraulic conductivity (i.e., the soil is interpreted
as being considerably more permeable than actual). The
introduction of an error on the inlet stand pipe elevation Z
systematically has a greater impact on falling head velocity
v than on Zm = (Zj + Zj+1)/2 [14, 15]. This thereby always
increases the scatter range of v values more than the scatter
range of Zm values. As a consequence, the slope of the velocity
graph will flatten, lowering the slope and thus yielding the
interpretation of a higher k value.

A simple corrective measure is to assign the measurement
with the less error as the independent X variable, and

the other as the dependant variable Y . This yields a
more appropriate interpretation method (which is just a
permutation between independent and dependent variables
used in the traditional velocity plot), where Zm is assigned to
the X axis and v to the Y axis. This interpretation is found
to be accurate (i.e., on average, it yields the correct k). The
alternate interpretation of the velocity method also displays
considerably less scatter in computed k values. It is thus rec-
ommended to discontinue the use of the traditional velocity
plot and replace it by the more statistically robust alternate
interpretation of the velocity method and its permuted plot.
In cases where the coefficient of determination R2 is less than
0.87, it is recommended to follow the five steps procedure
proposed by Chapuis [21]. This procedure reduces statistical
scatter of the velocity plot (traditional or alternate) and thus
increases the coefficient of determination. Least squares of
the alternate velocity plot can then be applied to obtain more
accurate hydraulic conductivity and piezometric level of the
surrounding soil.

The best method is found to be Z-t, with the corrected
Hvorslev trailing not too far behind. Both these methods are
accurate and the Z-t is particularly precise when compared
to the other studied methods. It is important to underline
here that the Z-t method has some weaknesses. It cannot
identify a number of phenomena that may develop during a
test. These phenomena can be identified with a velocity plot
[7, 8, 17, 19, 20]. It is also stressed that the Z-t method is
only valid when the velocity plot follows a linear trend. Thus,
it should always be used in conjunction with a velocity plot
(preferably the alternate one).

By using more than one method, it is possible to
better evaluate the accurateness and precision of interpreted
hydraulic conductivity values. As a rule of thumb, if the
difference between the alternate interpretation of the velocity
plot and the Z-t method is small (and if the velocity plot
follows a linear trend), the Z-t value can be considered
accurate and precise. If absolute errors on Z are less than
±1.0 mm (error relative to the range of elevation change
ΔZ/[Zmax − Zmin] = 0.7%), this study shows that it may be
concluded that computed hydraulic conductivity values are
accurate and precise.
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