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ABSTRACT 

In karst regions, groundwater flow and pollutant transport occur in two modes: fast

response flow in cave passages and slow-response flow in the aquifer-matrix. This thesis 

presents a computationally efficient numerical model that simulates the behavior of the two 

flow and transport modes. 

I 

A finite-difference method is used to discretize all governing equations. First, the 

fast-response flow in a network of cave passages is mathematically modelled by means of the 

full unsteady hydrodynamic equations and solved numerically using the Preissmann method. 

The slow-response flow in the aquifer-matrix is modelled by an unsteady Darcy equation and 

solved numerically using a fractional-step approach. These two equations are iteratively 

coupled through an exchange term reflecting the water exchange between cave passages and 

the aquifer-matrix. Next, the pollutant transport equations in the network of cave passages is 

solved using a characteristic method and in the aquifer-matrix using a fractional-step 

approach. These two pollutant transport equations are solved iteratively through an exchange 

term reflecting the pollutant exchange between cave passages and the aquifer-matrix. 

Sensitivity analysis on important parameters affecting groundwater flow and pollutant 

transport in karst regions shows that the equivalent diameters of the cave passages and their 

distribution in the aquifer-matrix are the most important parameters of the model, provided the 

topology of the cave passages is fixed. 

The model is capable of simulating dye trace experiments performed in Iowa's Big 

Spring basin. Time travel of two dye trace experiments from two different sinkholes is 

simulated. The results show that, for a fixed topology and given boundary conditions, only a 



2 

narrow range of equivalent diameters of cave passages, about 1.5 ft, can simulate the correct 

travel time of the dye. 

At the Big Spring basin, for a nondiffusive system, i.e., karst formations with large 

equivalent diameters of cave passages, it is possible to predict the flow at Big Spring using a 

reservoir-type formulation, thereby avoiding the complexity of a detailed mathematical 

formulation that considers all water pathways. The pathways are important for pollutant 

transport and the reservoir formulation is not adequate to determine the concentration of 

pollutants in the Big Spring flow. 
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The Embryo 

Read in the name of your Lord who created, 
Created man from an embryo; 
Read.for your Lord is the Most Bounteous, 
Who taught by the pen, 
Taught man that which he knew not. 

The Glorious Koran, XCVI, 1-5 
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CHAPTER I 

INTRODUCTION 

1.1. Background 

1 

The planning, development, and management of water resources in karst regions and 

fractured porous media require knowledge about physical, economic, and social factors. In 

particular, maintaining the quality of groundwater is of great interest. Unfortunately, 

pollutants are moving into groundwater at an ever-increasing scale. The challenge of 

maintaining the quality of groundwater has to be met to maintain the quality of life for humans 

as well as animals. 

Karst aquifers, in contrast to aquifers in homogeneous media, are extremely complex 

because of their inhomogeneous permeability. As shown in Figure 1.1, the relation of 

structures in rock, such as fracture systems and the orientation of cave passages, establishes 

secondary permeability. These fractures or cave passages represent less resistance to water 

flow than does neighboring rock. In contrast to aquifers in homogeneous media, karst 

aquifers, due to their inhomogeneous distribution of permeability, are extremely complex. 

Groundwater flow occurs in two modes: fast-response flow in cave passages and 

slow-response flow in the aquifer-matrix. These two components of groundwater flow are 

extremely different in the effectivity of groundwater transmission and groundwater storage. 

These flow characteristics therefore greatly influence pollutant transport in such a region. 

Although unsaturated cases are common in the real world, understanding the behavior of 

saturated groundwater flow is a very important step toward understanding unsaturated cases. 



Insight from saturated cases can be applied to the study of unsaturated cases. Study of the 

physical behavior of saturated cases is, therefore, the beginning of on-going research in 

groundwater flow in karst regions. 

solution 
do line 

·~~---

A solution opened joints and bedding planes with seepage water 

B potholes and joints with seepage and stream flow 

6 cave with free surface stream, filling in floods 

- permanently water-filled caves 

C solution opened joints and bedding planes permanently water-filled 

or temporarily flooded 

Figure 1.1. A Karst Hydrologic System Based on the Concept 
of Independent Conduits, after Cavaille (1962) 

1.2. Objective 

2 

The objective of the present study is to model the behavior of saturated groundwater flow 

and pollutant transport in karst regions. A new approach is introduced in which the "full" 

hydrodynamic equation in a cave passage network is solved directly. The pollutant assumed 

here is a nonreactive, conservative one, meaning that during transport, its quantity does not 

increase or decrease. As in any study of groundwater flow, little data are available. This is 



understandable due to the difficulties in measuring soil parameters, initial and boundary 

conditions, as well as the high cost involved in obtaining the data. For the purpose of the 

present study, no new field measurements have been performed. The study uses data 

obtained from competent published sources. 

3 

It is very important to mention that the present study is pan of a larger research objective; 

i.e., the present study serves as the deterministic pan of a Monte Carlo simulation of water 

resources in a karst region. Since available observations are limited, system parameters 

(aquifer properties, system geometry, initial and boundary conditions) must be generated by 

statistical techniques. Each realization of the data generated becomes the input data for the 

"deterministic engine" which processes the data to produce one realization of output. In a 

Monte Carlo simulation, hundreds or thousands of realizations of input may be generated, 

each of which produces its corresponding output. These in tum must be interpreted by 

statistical means. In karst regions, the "deterministic engine" will be a model that simulates 

numerically the behavior of groundwater water and pollutant transport for unsaturated cases. 

Since the present study is only capable of handling saturated cases, it must be extended to 

unsaturated cases in order to become the complete "deterministic engine" for the Monte Carlo 

simulation. The extension of the present study to unsaturated cases and its inclusion in Monte 

Carlo simulation are discussed in Chapter V as suggestions for further research. 

The topology of cave passages and the boundary of the groundwater flow region are 

inferred from data obtained for karst formations in the Big Spring Basin, a 103 square mile 

groundwater basin located in Clayton County, northeastern Iowa (Hallberg et al., 1989), see 

Figure 1.2. The topography of the region under study is extracted from the USGS (United 

States Geologic Survey) contour map. Soil parameters, i.e., hydraulic conductivity, specific 

storage, exchange coefficient, dispersion coefficient, and effective porosity are based on 

appropriate published literature. 
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Figure 1.2 . The Big Spring Basin in Clayton County, northeast Iowa, 

after Hallberg et al. (1989) 

Chapter II presents a review of related literature. Since groundwater flow and pollutant 

transport in fractured porous media are closely related to the present study, literature 

concerning fractured formations is also reviewed. 

The development of the model is explained in detail in Chapter ill. Firstly, all the 

equations that govern the physical processes in the aquifer-matrix and cave passages are 

described. Secondly, the strategy for approximating the governing equations is explained. 

This strategy is presented in two major sections to reflect the fact that the aquifer-matrix and 

cave passages have different flow characteristics. One section explains the numerical 

4 

approximations of the governing equations for the aquifer-matrix. The other section explains 

the numerical approximations of the governing equations for cave passages. The last section 

of Chapter m explains the coupling between aquifer-matrix and rnegapore computations. 



5 

In Chapter IV, tests and applications of the model are presented. First, the model results 

are compared to relevant analytical solutions. Second, sensitivity analysis for various 

parameters affecting the response of water discharge and pollutant transport at Big Spring is 

performed. Third, the model is applied to simulate the groundwater flow and transport of 

pollutants in the Big Spring Basin. 

Chapter V discusses the merits of the model. Further research to generalize the model 

for unsaturated cases is suggested. In addition, the possible inclusion of the present study in a 

Monte Carlo simulation is explained. Some important aspects of the Monte Carlo simulation 

are also discussed. 



CHAPTER II 

LITERATURE REVIEW 

2.1. Introduction 

6 

The purpose of this chapter is to review the work of other researchers in the field of 

groundwater flow and pollutant transport. The first part reviews studies on groundwater flow 

and pollutant transport in fractured porous media The second part is a review of the literature 

on groundwater flow and pollutant transport in karst regions. The third part summarizes the 

review and outlines the new approach to be used in the present study. 

Of the many studies on groundwater flow, pollutant transport in karst regions and 

fractured porous media performed in the past few years, most have dealt with fractured 

porous media and only a few with karst regions. Relevant studies from the two regions are 

presented in the following sections. 

2.2. Groundwater Flow and Pollutant Transport 
in Fractured Porous Media 

Fractures (cracks and fissures) exist in a broad range of geologic formations. They have 

been produced under a variety of geological and environmental processes, such as tectonic 

movements, secondary stresses, weathering, thermal expansion and chemical action of 

percolating fluids. Given the large extent to which fracturing occurs in aquifers, the 

modelling of flow and pollutant transport in such formations is of practical importance. 

Two basic approaches are used to model groundwater flow and pollutant transport in 

fractured porous media: the "dual porosity" model and the "equivalent porous medium" 

approach. In the "dual porosity" approach, a fractured medium is treated as two porous media 

of known structure. In the "equivalent porous medium" approach, a fractured porous medium 
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is treated as a macroscopically uniform porous medium. All of the studies reviewed here used 

the "dual porosity" approach. The second approach is not reviewed since it is not appropriate 

for a karst region in which cave passages are present. However, the distinguishing 

characteristics of the two approaches are explained. Bear and Berkowitz (1983) discussed in 

detail how and when the two approaches should be applied. 

To begin with, Bear and Berkowitz explain the concept of a representative elementary 

volume (REV) as a sufficiently large volume of a fractured porous medium within a given 

domain that contains both a void space and a solid matrix. At the same time, the size of the 

sample should be small enough so as to represent a sufficiently close neighborhood around 

the point of sampling. The detailed explanation of the REV concept may be found in Bear 

(1979). 

Using REV, Bear and Berkowitz classified the various problems of flow and pollutant 

transport in fractured porous media in the following way: 

Zone 1, the very near field. Interest is focused on transport within a single, well-defined 

fracture, possibly with transport into the adjacent porous blocks. 

Zone 2, the near field. Zone 2 treats transport in a relatively small, but well-defined, set of 

fractures. 

Zone 3 , the far field. Transport in two overlapping continua is considered - one composed 

of a network of fractures, and the other consisting of the porous blocks - with 

exchange between them. 

Zone 4, the very far field. The entire fractured porous medium may be regarded as a single 

continuum, which reflects the properties of both fractures and porous blocks. 

Witherspoon et al. (1988) explained another approach in which the hydraulic gradient, 

Kg. is used as a parameter to determine the appropriate zone. The permeability of fractured 

media in the direction of the hydraulic gradient, Kg. can be measured in any direction by 

rotating the boundaries of the flow region y degrees and consequently rotating the direction of 

the gradient. For a homogeneous, anisotropic medium, {Kg)-0 ·5 versus y is an ellipse when 
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plotted on polar coordinates (Marcus and Evanson, 1961; Marcus, 1962; Bear, 1972). 

However, according to Witherspoon et al. (1988), for inhomogeneous fractured media, 

(K8)-0 ·5 may not plot as a smooth ellipse. Instead, the shape of a plot using measured values 

of K 8(y) for a given test volume of rock may be quite erratic. This plot can, therefore, be 

used as a test of whether or not the given rock can be approximated as a homogeneous porous 

medium. If (K8)-0 ·5 does not plot at least approximately as an ellipse, then no single 

symmetric permeability tensor can be found to describe the medium. If the results cannot be 

described by a penneability tensor, flow through the medium cannot be analyzed with a 

continuum technique. 

Bear and Berkowitz (1983) explained how to solve problems of groundwater flow and 

pollution in fractured rock aquifers. In their studies, they assumed that flow occurs in 

fractures as if it were between parallel plates, and they treated fractures as an equivalent 

porous medium. For a fracture, they started by using the Navier-Stokes equation for an 

incompressible fluid of constant density in a fracture: 

av 2 
pat+pV·(VV)+Vp-pg-µV V =0 (2.1) 

where p andµ are fluid density and dynamic viscosity, respectively; pis pressure; Vis the 

fluid velocity; t is time; and g( = - gV z) denotes gravitational acceleration, with z the vertical 

coordinate (positive upward). Definition of the piezometric head as <p = l + z and 
pg 

substitution into Eq. (2.1) yields 

av 2 
pat+ pV·(VV) + pgV<p-µV V = 0 (2.2) 

Averaging across the fracture width, with the assumptions that (1) the dispersive 

momentum flux is much smaller than the advective flux, (2) across any width, the piezometric 

heads at the fracture wall are almost identical, and (3) the flow is steady, leads to the final 

form of Eq. (2.2) as follows: 



V _ pg b2 d<pave 
ave--µITCiX 
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(2.3) 

where b is the width of the fracture. If the fracture walls are assumed to be permeable, then 

F.q. (2.2) becomes 

Vave= 
pgb2 d<pave 

12µ+2bp<It dx 

where q1 is the leakage into or out of the fracture (q1 is assumed to be uniform over the 

fracture length). From the continuum approach point of view, the equivalent hydraulic 

conductivity of the fracture can be deduced from F.qs. (2.3) and (2.4) as 

pg 2 pgb2 
Kr- - -..!:t. and Kr-----

- µ 12 -12µ+2bpci1 

(2.4) 

(2.5) 

for the case of impermeable and permeable fractures, respectively. Bear and Berkowitz 

extended the analysis into multiple and ordered fracture systems. For randomly oriented 

fractures, they averaged the aforementioned results over all elements of all fractures within the 

REV. 

Bear and Berkowitz also analyzed pollutant transport in fractured aquifers. They started 

the analysis for a single fracture by using the mass balance equation as follows: 

de 
dt: + V' (cV - Dd Ve) = 0 

where c = c(x, y, z, t) is the pollutant concentration, and Dd denotes the coefficient of 

molecular diffusion. By averaging across the fracture, they derived the following 

relationship: 

where 

(2.6) 

(2.7) 
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(2.8) 

and ~ is the coefficient of hydrodynamic dispersion. For a fractured rock, they did not 

employ the double continuum approach; that is, they did not treat fractures and porous 

medium as two different entities. Instead, they treated fractures and porous media as one 

entity and modeled pollutant transport in a fractured rock domain using a single continuum 

approach. In the absence of sources, adsorption and decay phenomena, the mass balance 

equation for an ordinary porous medium is 

d(nc) h 
ar-=-V·n (cV-D Ve) (2.9) 

where n is the volumetric fraction of the void space, c denotes concentration, V is the fluid 

velocity, and oh represents the coefficient of hydrodynamic dispersion; both c and V are 

averaged over an REV of the fractured rock domain. 

Endo et al. (1984) presented a technique to determine when transport in an anisotropic 

fracture system can be modeled as equivalent to that of porous media. They stated that to use 

the continuum approach, one must demonstrate that the fracture system has the same transport 

behavior as an equivalent porous medium. In their work, hydraulic effective porosity was 

calculated as the product of specific discharge and mean travel time, divided by linear length 

of travel. Specific discharge and hydraulic effective porosity were measured in different 

directions of flow in regions of varying size with constant hydraulic gradients. According to 

the authors, if the fracture system behaves like an equivalent porous medium, directional flow 

has the following properties: (1) specific discharge can be predicted from a permeability tensor 

and (2) hydraulic effective porosity is independent of direction of flow . They developed a 

numerical model to simulate mechanical transport under steady flow in a discrete fracture 

network. Endo et al. examined only systems with parallel fracture sets in which all fractures 

were long compared to the region examined in their study. These systems satisfied 
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criterion 1 in that flux could be calculated using a porous medium equivalent. However, 

these systems did not satisfy criterion 2 because hydraulic effective porosity was directionally 

dependent. They concluded that the flux could be accurately predicted using porous medium 

assumptions for some fracture systems, but it might not be possible accurately to predict 

mechanical transport using the same assumptions. 

Haldeman et al. (1991) conducted a series of laboratory experiments to determine the 

flow and transport properties of a fractured porous tuff block (measuring 20 cm x 20 cm x 

50 cm). In the experiment, porous ceramic plates controlled the pressure head applied to the 

upper surface of the fractured rock block. One plate was placed immediately above a fracture 

and two other plates were placed on either side of the fracture above the rock matrix. Much of 

the flow from the fracture at the lower surface first passed through the rock matrix despite 

direct contact with the porous plate. They observed that flow from the fracture plates is 

diverted to the fracture through the matrix within the first 3 cm and an exchange of fracture 

and matrix flow occurs at z = 20 cm and the fracture opening at z = 50 cm. Because of 

significant channeling of the fracture flow, breakthrough curves deviated from the results of 

the numerical simulation using the boundary integral method. 

Tsang and Tsang (1987) used a channel model to study fluid flow and solute transport in 

a tight fractured medium. They hypothesized that fluid flow and solute transport through a 

tight rock medium is by means of a limited number of tortuous and intersecting channels of 

variable aperture. The parameters that characterized the channel were (1) the aperture density 

distribution, which gives the relative probability of the occurrence of a given aperture value, 

(2) the effective channel length and width, and (3) the aperture spatial correlation length, 

which gives the spatial range within which the aperture values are correlated. The profile of 

apertures along the channels was generated by statistical methods. In this study, the authors 

neglected the presence of the aquifer-matrix in which the fractures are embedded. The results 

of the model agree well with laboratory data obtained by Moreno et al. (1985). 
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Long and Billaux (1987) described a technique to account for observed spatial variability 

when processing field data for a fractured network model. In this technique, a network was 

generated, subregion by subregion, where the properties of each subregion were predicted 

through geostaristics. The method for two-dimensional analysis is based on data from 

Fanay-Augeres, a uranium mine in France. To generate fractures in a statistically 

heterogeneous region, they first divided the region into statistically homogeneous subregions. 

In each subregion and for each fracture set, they specified the areal fracture density and the 

orientation, length, and aperture distributions. Steady state flux in the fracture elements was 

calculated using the cubic law under the assumption that the fractures behave like parallel 

plates. The rock matrix was assumed to be impermeable. The permeability in the direction of 

the gradient, K 8, could then be described in terms of J, the magnitude of the gradient applied 

across the flow region, and Qin• the total flux into the flow region in the direction of the 

d. K Qin gra ient, as 8 = 1 . 

Cacas et al. (1990a, 1990b) modeled flow and transport mechanisms in a stochastic 

discrete fracture network. This fracture network model, assuming negligible matrix 

permeability, was developed and calibrated using the following field data: (1) geometry of the 

fracture network and (2) local hydraulic properties measured by injection tests in boreholes. 

The field data were obtained from a large-scale investigation of fracture flow conducted in a 

granite uranium mine at Fanay-Augeres, France. Using data from the same region, Feuga 

(1988) used the "regionalized density Poissonian process" to generate fracture fields that are 

statistically and geostatistically similar to the real fracture field. 

From the analysis of trace data and examinations of fracture surfaces, several studies 

have shown that fractures are likely to be roughly elliptical or circular in shape (Robertson, 

1970; Pollard, 1976; Beacher and Lanney, 1978). Witherspoon et al. (1988) generated a 

three-dimensional fractured network that is compatible with the geometry of fractured rocks in 
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the field. They adopted a circular shape as a subset of the general elliptical case mainly 

because this shape simplifies the calculation of flow. Funhermore, the two opposite surfaces 

of the fractures are assumed to be parallel and the standard parallel plate model for flow is 

assumed appropriate. The disc-shaped discontinuities are assumed to be embedded in an 

impermeable matrix. The discs can be arbitrarily located within the rock volume and can have 

any desired distribution of aperture, radius, orientation, and density. Thus, where the disc 

model is appropriate, it is possible to generate fracture networks that are statistically similar to 

those that occur in nature. Billaux extended Witherspoon's three-dimensional model to 

include channel flow. The channels can be arbitrarily located within the fracture and can have 

any desired distribution of size, length, orientation and density. 

Andersson and B j5rn ( 1987) investigated flow through a network of discrete fractures in 

a three-dimensional domain. They modeled fractures as circular discs of arbitrary size, 

orientation, transrnissivity, and location. A fracture network was characterized by the 

statistical distribution of these quantities. Their numerical simulation model was capable of 

generating the fractured network of desired statistical properties and solving for the steady-

state flow. On each fracture disc, the flow was discretized with the boundary element 

method. 

2.3. Groundwater Flow and Pollutant Transport 
in Karst Regions 

Avdagic (1976) demonstrated the use of piezometric borehole heads to determine flow 

through a flooded karst plain. In most flooded karst plains, water inflows and outflows occur 

through submerged inlets and outlets. The hydrodynamic and continuity equations are used 

for determining the inflow and outflow of a plain. During flooding, the flow is determined 

for certain zones by level differences between the water level in the plain and a level or 

pressure measuring point in a conveyance channel, or by using the velocity head at the 



measuring point of the channel. Avdagic used the Fatnicko region in Yugoslavia as an 

example of the method developed. He visualized the flooded karst plain as a three-reservoir 

system, in which only one reservoir is periodically flooded. During floods, pans of the 

system with restricted flow capacities are under pressure while the other pans have free 
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surf ace flow. The outflow discharges were calculated by the formula Q = k 6H• where k and 

a are the constants for certain flow conditions. Coefficient k depends on the shape and size of 

the outflow opening, while a depends on the flow regime. Q is the outflow discharge and 6H 

is the pierometric difference. The coefficients were determined by regression analysis using 

measurements from the field. A vdagic found that for the region under study the value of k 

ranges from 0.898 to 16.440 and the value of a is 0.5. 

Milanovic (1976) studied the water regime of the Ombla spring drainage area By 

comparing the flow hydrograph of the spring and the level hydrographs of numerous 

pierometric boreholes, he concluded that the Ombla river karst system, especially in periods 

of high groundwater levels, functions as a hydraulic system under pressure. He presented a 

detailed geologic mapping to help identify the rone in which a concentration of preferential 

flow directions could be expected (see Figure 2.1) . 

Sharp (1986), Iwai (1976), Schrauf and Evans (1986), and Kilbury et al. (1986) have 

studied fluid flow through individual fractures in the laboratory. They demonstrated that a 

linear relationship exists between the flow rate and the applied fluid gradient as long as flow is 

laminar. Within individual fractures, laboratory and field tests, along with simulation models, 

have documented the effects of fracture roughness (Schrauf and Evans, 1986), and tortuosity 

and channels (Tsang and Tsang, 1984, 1987) on the measured fluid flow in response to an 

applied fluid gradient. 

Liggett et al. (1988) modeled flow in a three-dimensional network of discrete fractures 

using the boundary element method. The flow in one fracture is considered to be two

dimensional although the fractures may be connected in a three-dimensional network. 



Figure 2.1. Network of Fracture Tectonics in the Catchment Area of the Ombla River, 
Yugoslavia, with a Surface of about 1500 km2

, after Milanovic (1976) 

2.4. Concluding Remarks 

Before explaining the approach used in the present study, the following points from 

other studies should be emphasired: 

• Fractures always refer to two parallel plates. 

15 
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• Flow in fractures is assumed to be steady. 

• Flow in fractures may not be analyi.ed with continuum techniques, if no single symmetric 

permeability tensor can be found (Witherspoon et al., 1988). 

• Endo et al. (1984) pointed out that the equivalent porous medium approach may not 

accurately predict mechanical transport in a fractured system. 

• Haldeman et al. (1991) showed experimentally that indeed there is exchange of water 

between fractures and the surrounding rock matrix. In addition there is significant 

channelling of fracture flow. 

• Tsang and Tsang (1987) showed that, using the channel approach, their model agrees with 

laboratory data. 

• Laboratory and field tests, along with simulation models, have documented the effects of 

fracture roughness (Schrauf and Evans, 1986). 

• A network of cave passages that resembles the actual one can be generated using statistical 

methods. 

• In a karst region, Avdagic (1976) demonstrated that the outflow discharge of sinks can be 

modeled as a three-reservoir system and can be calculated by the formula Q = k ~Ha where 

k and a are the constants for certain flow conditions. 

• Milanovic (1976) showed that in a well-developed karst region, especially in a period of 

high groundwater levels, the discharge functions as a hydraulic system under pressure. 

The present study comprises numerical modeling in a karst region. The author assumed 

that, in a karst system, independent conduits or passages are developed (see Figure 1.1). 

This assumption is supported by field observations as depicted in Figure 2.1. Moreover, the 

studies in fractured rock suggested that, in addition to channel roughness, the channeling 

effect plays a major role in the fracture flow. 

In the karst system of the Big Spring Basin, Clayton County, Iowa, where the present 

study is based, Hallberg et al. (1983) used the dye tracing technique to show that there are 

connections between sinkholes and springs. He also pointed out that portions of the karst 



17 

system are quite open and very responsive. Small plastic spheres, 0.4 inch diameter, were 

introduced into several sinkholes along with dye. Some of these spheres have been found at 

Big Spring. Interestingly enough, during high discharge at Big Spring, cornstalks and an 

occasional beverage can also emerge from the groundwater. Thus, the independent conduit 

assumption for the karst system at the Big Spring Basin is strongly supported. Moreover, in 

saturated cases, these conduits are hydraulic systems under pressure, as suggested by 

A vdagic and Milanovic. 

The present study uses a new approach, based on the aforementioned assumption, to 

model flow and pollutant transport in a karst region. In this approach, the megapore flow is 

treated as flow in an equivalent circular pipe. The term megapore is used to represent 

preferential flow paths/cave passages existing in a karst region. The flow in megapores is 

governed by Eq. (2.2) and the flow in the aquifer-matrix is governed by the usual equation 

used in ordinary porous media. Between flow in the megapores and the aquifer-matrix there 

is water and pollutant exchange. It is interesting to point out that, although megapore flows 

are governed by the same equation, used by Bear and Berkowitz (1983), Eq. (2.2), the 

assumption used to reach the final working equations is quite different. Bear and Berkowitz 

(1983) used further assumptions to simplify Eq. (2.2) into Eq. (2.3), the final working 

equation. In the present study, after Reynold's and spatial averaging has been applied to 

Eq. (2.2), the Strickler formula is used to express the energy loss, as usually used in 

hydraulics, to express the last term in Eq. (2.2). The detailed derivations of the governing 

equations used in the present model are explained in the next chapter. 



CHAPTER III 

MODEL DEVELOPMENT 

3.1. Introduction 
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The present study presents a model to simulate a complex, real-life situation. The 

domain of the model is based on the geometry and topography of the Big Spring Basin, 

depicted in Figure 3.1. The domain is three-dimensional, and certain topological conventions 

are required to handle it. To this end, a so-called "soil-topology" convention has been 

developed which makes it possible to describe any kind of three-dimensional boundary. All 

numerical approximations of the governing equations are applied within this topology. In the 

present study, the finite-difference method is used to approximate the governing equations, 

and the solution grid is generated to conform as closely as possible to the aquifer topography. 

This chapter is organized as follows: First, the governing equations for both the aquifer

matrix and the megapore network are presented. From now on the term "megapores" will be 

used instead of cave passages. Second, to highlight the unique features of groundwater flow 

in a karst region, a brief description is given of the topological structure of the aquifer. Third, 

the general computational strategy is briefly described. Fourth, the numerical techniques used 

to approximate the governing equations are described. Since the numerical techniques for the 

aquifer-matrix and the megapores are different, they are divided into two sections, one for 

each topic. Lengthy derivations are omitted in these sections, especially in the numerical 

approximations, so the basic idea can be delivered clearly. Detailed derivations are found in 

Appendix A. Fifth, iterative coupling between computation of the aquifer-matrix and of the 

megapores is explained. All numerical techniques described in this chapter are coded in a 

FORTRAN program named Labyrinth. 
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Figure 3.1. Southeast View of the Big Spring Basin 

3.2. Governing Equations 

This section describes in detail all the governing equations used in the present study: 

hydrodynamic equations, equations of pollutant transport, and mass exchange equations for 

both the aquifer-matrix and megapore network. 

3 .2 . 1. Hydrodynamic Equation for Aquifer-Matrix 

The governing equation of flow in porous media is derived from the mass conservation 

law applied to a control volume. For practical purposes, the following assumptions are 

invoked (Bear, 1979, 1972). 

(a) the velocity of the solids is small so Darcy 's law still holds; 

(b) specific storage (S) and hydraulic conductivity (K) are unaffected by the variation of 

porosity ( e ); 
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(c) spatial variations in water density, p, are much smaller than the local, temporal ones. 

Under these assumptions, for a nonhomogeneous, anisotropic saturated porous medium, the 

governing equation can be written in terms of piezometric head (h) as 

(3.1 ) 

where K is hydraulic conductivity (LT -1
); his piezometric head (L); Wis volumetric source 

flux {L3 T -1
); Sis specific storage {e1

); A is cross sectional area of aquifer in each direction, 

in a finite-difference block {L2 
); dis the length of control volume in each direction (L); and 

W=wu (3.2) 

In Eq. (3.2) w is the source term, volumetric flux per unit volume (11
) ; and u is the volume 

of the aquifer in a finite-difference block {L3 
). Volumetric flux, W, is the source exchange 

term between the aquifer-matrix and megapores. 

3 . 2 . 2 . Pollutant Transport Equation for Aquifer-Matrix 

The governing equation of pollutant transport in porous media is also derived from the 

mass conservation law applied to a control volume. For a nonhomogeneous, anisotropic 

porous medium, the governing equation can be written in terms of concentration (C) as 

where U = -Kx Clt U = - Ky Clt 
x e ax Y e ay 

U = - Kz Clt 
z e ifz 

(3 .3) 

(3.4) 

In Eq. (3.3 ) C is solute concentration {ML-3
) ; Dis the dispersion coefficient {L21 1

) ; U is 



seepage or average pore water velocity (Ll1
); c. is solute concentration in the sources or 

sinks {ML-3
); e is effective porosity; and U,., UY' Ui: and Ware known quantities from the 

hydrodynamic computation. 

3. 2. 3. Hydrodynamic Equation for Megapores 
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In the present study, the flow is restricted to one-dimensional, incompressible, full

megapore flow, the principal implication of which is that the discharge in a single megapore 

must at any instant be constant along its length. Of course the discharge may vary from one 

megapore to another along a series of megapores in a network due to external or aquifer

matrix inflow. From the law of conservation of momentum, the governing equation in any 

single megapore can be written as 

(3 .5) 

Since Q -:1; Q(s) along a megapore, Eq. (3.5) can be rewritten as 

dQ - {Q)2aA + gA{ah + QIQ) = 0 
at A as as K2 

(3.6) 

where tis time; sis the longitudinal megapore coordinate; Q(t) is megapore discharge; A(s) is 

megapore cross-sectional area; h(s,t) is the megapore piezometric head; Sr(s,t) is megapore 

energy slope(= Q IQ ); K(s) is full-megapore conveyance; and g is gravitational 
K2 

acceleration. In Eq. (3 .6), the four terms are associated with local acceleration, advective 

acceleration, net normal pressure force, and boundary shear force, respectively. 

3.2.4. Pollutant Transport Equation for Megapores 

The governing equation for pollutant transport can be derived from the law of mass 

conservation, with the same assumptions as those used to derive hydrodynamic equation. 
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Following the derivation given by Fischer et al. (1979), the pollutant transport equation can be 

generaliz.ed as 

d(AC) d(AUC) 
d1 + ds = ds 

(3.7) 

Differentiating the left hand side of Eq. (3.7) and recognizing that a~+ d(~:n = 0 from 

conservation of mass, Eq. (3.7) can be rewritten as 

ac 
ac ac a(A £as) 

A-+AU- = ----=---at as as (3.8) 

where U(s,t) is velocity of megapore flow, and E(s) is the megapore dispersion coefficient. 

3.2.5. Mass Exchange Between Aquifer-Matrix and Megapores 

The mass exchange between aquifer and megapores consists of two constituents, water 

discharge and pollutant flux. The water discharge exchange uses the same principle used in 

computing leakage through a semipermeable layer from an overlying (or underlying) aquifer 

into another aquifer with a different piezometric head (see Bear, 1979, page 36). Therefore, 

the amount of mass exchange can be computed as a linear function of the difference between 

the piezometric head inside the megapore and that of the aquifer-matrix surrounding the 

megapore. The equation of water discharge exchange can be written as 

(3 .9) 

where a. is the coefficient of exchange (L-1T -1
); h

1 
is the piezometric head of the aquifer-

matrix (L); and l\, is the piezometric head of the megapore (L). 
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For the pollutant flux exchange term the assumption is that the advective exchange term 

is dominant compared to that of the diffusive one. The equation for the pollutant exchange 

term thus becomes simply the concentration of pollutant in water multiplied by its water 

discharge: 

W 8 =Cs W (3.10) 

where w is as defined in Eq. (3.9). 

3.3. Topological Structure of the Aquifer 

The aquifer is represented by a three-dimensional block of computational grid points, 

referred to herein as aquifer-matrix grid points. The three-dimensional equations for aquifer

matrix water and pollutant movement are solved numerically on this computational grid. 

Preferential flow paths, such as root-zone macropores or karst megapores, are 

represented as an interconnected network of so-called pipes, within which water and pollutant 

transport are represented as equivalent to flow in full pipes. 

Exchange of water and pollutant between the aquifer-matrix and megapore passages is 

taken to occur only at aquifer-matrix grid points through which the pipe network passes; these 

intersections are called nodes. Thus, it is presumed that however the pipe network is 

generated (e.g., manually, through stochastic simulation, etc.), it is constrained to pass 

frequently through aquifer-matrix grid points; i.e., that nodes occur as densely as possible. 

Figure 3. 2 is a schematic depiction of a possible simple topological structure. The 

aquifer-matrix grid point coordinates of nodes are shown in parentheses. Nodes l , 6, 12, 20, 

and 33 (shown as inverted triangles) represent intersections of the megapore structure with the 

ground surface; i.e., sinkholes. Nodes 5, 8, 16, and 23 are junctions of multiple pipe

network flow paths. Nodes 11, 19, 32, and many others not shown, represent aquifer-matrix 

grid points through which pass a single pipe-flow path. 
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Figure 3.2. Schematic Representation of the Karst Aquifer 

3.4. General Computational Strategy 
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Water and pollutant transport in the aquifer-matrix are essentially diffusive phenomen·a, 

governed by diffusion mass conservation equations whose dependent variables are heads and 

concentrations, respectively. Water and pollutant transport in the pipe network are essentially 

advective phenomena, governed by energy or momentum and mass conservation equations 

whose dependent variables are water discharges, heads and concentrations. The water and 
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pollutant exchange between the aquifer-matrix and pipe network is governed essentially by the 

differences in head and concentration between the two systems at any node. Recall that a 

node is defined as an aquifer-matrix grid point through which the pipe network passes. The 

heads and concentrations of both systems are coupled through the water and pollutant 

exchange. In principle, the entire system of equations - aquifer-matrix diffusion and 

pipe-network energy or momentum and mass conservation - must be solved simultaneously. 

This simultaneous solution poses no fundamental conceptual problems. However, its 

practical execution would be extremely demanding of computer resources, especially for large 

and/or complex systems. Therefore, a fractional-step computational strategy is adopted 

whereby, for each of several iterations in a computational time interval, the aquifer-matrix and 

pipe-network equations are solved separately, their exchange-term coupling being represented 

only approximately in each iteration. The details of this procedure are developed in following 

three main sections. The first section describes the numerical solution of the governing 

equation for the aquifer-matrix. The second section explains the numerical solution of the 

governing equation for the pipe network. The last section elaborates the numerical procedure 

for approximating the exchange terms between aquifer-matrix and pipe network. 

3.5. Numerical Solution for Aquifer-Matrix 

3.5.1 . Strategy for Approximate Solution 

The aquifer-matrix algorithm is built on the principle of water and pollutant mass 

conservation at aquifer-matrix elemental control volumes. Aquifer-matrix grid points are 

generated based on the geometry of the Big Spring aquifer (Figure 3 .1 ). Figure 3. 3 shows 

the schematic representation of the aquifer as adjusted to conform with the finite-difference 

grid. To avoid using excessive computer time and resources, the split-direction approach is 

used. Thus, the governing equations, at any instant, are solved successively for each 

direction of the principal axis in Cartesian coordinate directions within the three-dimensional 

block, as depicted in Figure 3.3. 
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Figure 3.3. Schematic Geometry of the Aquifer after Adjustment 
to Conform with the Finite-Difference Grid 

In any computational direction, the algorithm must recognize the boundary of the 
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17 

19 

domain. For example, the algorithm must recognize that there is a valley between two hills, 

and computations must be performed on each hill while above the valley, where there is no 

aquifer-matrix, computations must not be performed. The soil-topology consisting of 

118 unique orientations of the aquifer-matrix grid point with respect to the origin of the 

Cartesian coordinate, is used to define such a geometry. One aquifer-matrix grid point 



27 

associates with one unique soil-topology. Therefore, it is possible for several aquifer-matrix 

grid points to have the same soil-topology. 

3.5.2. Split-Direction Approach 
for Approximating Hydrodynamic Equations 

3.5.2.1. Development of the Finite-Difference Equations 

This section discusses the finite-difference approximation of Eq. (3.1). To begin with, 

let us use ~ h to denote ~ ~ ( Ax Kx :. ). Eq. (3 .1) can thus be rewritten in a general 

finite-difference form as 

(1-0) 0; h" + 0 0; hn+l + (1-0) 0; h" + 0 0; hn+l + 

(1-0) 0 ;hn + 0 0 ;hn+l _ (1~) wn + 0 wn+l =.s._y_ (hn+l_hn) 
~ 

where 0 ( 0 $ 0 $ 1) is an implicitation factor; i.e., e = 1 =>"fully implicit" and 

0 = 0 =>"fully explicit." All other symbols have been previously defined. 

(3.11) 

The exchange term, w (or W), is the term that actually couples the megapore network 

computation with that of the aquifer-matrix. The aquifer-matrix exchange inflow wn+1 can be 

written as 

wn+I = W ( hn+l h':':+-1) 
m ' tjk (3.12) 

that is, as some function of the pipe-network nodal head h~t 1 and the aquifer-matrix head 

hijt1 at the aquifer-matrix grid point associated with node m, at future time ~+i· 

Now, in general, a Taylor-series expansion of W"+1 can be written as 

(3.13) 



where ~and h;~ represent the latest iterative estimates of h~,+ 1 and hijt 1, and Aflm and 6hijk 

are unknown corrections to those estimates. For convenience, 6hijk is rewritten as Afl, so 

Eq. (3.13) becomes 
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(3.14) 

Eq. (3.14) must be recast to conform with the split-direction approach. The source term, wn•• 

or w0
•

1
, must be split into x-, y-, and z-directions. Thus, Eq. (3.14) becomes 

wn+I = Wn + ~~ (hx - hn) + ~~ (hY - hx) + ~~ (hn+l - hY) + i~ Aflm 

Or wn+l = wn + ~~ (hX - hn) + ~~ (hY - hx ) + ~~ (hn+l - hY) + i~ (hm - h:h) 

(3.15) 

where n+ 1 denotes the end of the current time step; h" is the aquifer piezometric head at the 

end of the previous time step; hx is the aquifer piezometric head at the end of the x-direction 

computational step; hY is the aquifer piezometric head at the end of the y-direction 

computational step; hn+1 is the aquifer piezometric head at the end of the z-direction 

computational step, which is the same as the aquifer piezometric head at the end of the current 

time step; hm is the latest estimate of the pipe piezometric head; and h:h is the pipe piezometric 

head at the end of the previous time step. 

Now~ (hn+1 - hn) in Eq. (3.11) can be rewritten as 

(3.16) 

Substitution of Eqs. (3.15) and (3.16) into Eq. (3.11) yields 
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(3.17) 

In the fractional-step sense, Eq. (3.17) can be generaliz.ed and written as 

(1-0) 02 hn + 0 o2hn+l _l wn -0 aw (hn+l_ hn )- 0 aw (h -hn ) = S1L (hn+l_ hn) 
3 ahs 3 ahm m m & 

Discretization of Eq. (3.18) using the Crank-Nicholson (C-N) scheme yields 

(1--0) {A h'i-1 -(A+B) hi+ B h'i+d + 

0 {A hi_j1 - (A+B) ht1 + B h'i:l} -

l wP - 0 aw (hi:i+1_ hi:i )-~aw (h - hP ) = su (hi:i+1_ hi:t) 
3 ahi I I 3 ahm m m & I l 

(3.18) 

(3.19) 

where hm is the latest estimate of the pipe piezometric head; h~ is the pipe piezometric head at 

the end of the previous time step; A and B are known coefficients as defined in Appendix A. 

Further manipulation and grouping the terms of Eq. (3.19) yields 

-0A h'.1+l + {0 (A+ B +aw)+ fuL} hi:t+l_ 0B hi:t+l = 
1-} ahi & I I+} 

(1--0) {A hj_ 1 - (A+ B) hi+ B hi+il -

l wP + 0 aw hi:i - ~ aw (h - hP ) + S1L hi:i 
3 ahi 1 3 ahm m m & 1 

fori = 2, .. .. , N- 1 (3.20) 
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In matrix form, Eq. (3 .20) can be written as 

[M] {h} = {F} (3.21) 

where [M] is a tri-diagonal matrix whose N-2 elements comprise contributions from the left 

hand side of Eq. (3.20), and {F} is an N-2 element vector of known quantities from the 

right hand side of Eq. (3.20). In Eq. (3.21), there are N unknowns with (N-2) equations, 

so two more equations from boundary conditions are needed, as described in the following 

paragraphs. 

3.5 .2.2. Boundary Conditions 

General boundary conditions (BC) of the problem are of the mixed type: 

ah 
C1 h + C2 ax =Ct ( x,y,z,t) (3.22) 

where C 1, C2 are arbitrary constants and C1 is a time dependent constant. By imposing a 

general BC of the mixed type, it is easy to handle either "Dirichlet" or "Neuman" boundary 

conditions. The several cases of boundary conditions may be handled as follows: 

a. Imposed head - "Dirichlet" type => (C2 = 0) 

c c 
hi= C~ => set A; = Ci = 0 and Bi = 1, Di= c; , for i = 1,2, ... , N (3 .23a) 

b. Imposed discharge - "Neumann" type => (C1 = 0) 

ah_ Ct 
ax -C2 

(3.23b) 

c. Mixed-type boundary: 

(3.23c) 

The discretization of the governing equations on the boundary needs special treatment 

since the second derivative of piezometric heads must be discretized. For interior nodes, the 

derivative can always be expressed in terms of the piezometric head of the points which 

neighbor the node of interest, while on the boundary, there is only one neighboring point. 

Thus, the discretization used for interior nodes can no longer be used The assumption is 
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made that, in the neighborhood of boundary points, a Taylor-series expansion is applicable. 

Substituting the boundary condition, Eq. (3.22), for the first computational point 

()h C1 C 
- dX = C

2 
hi - C~ into the Taylor-series expansion for~ around h1, at any time level, 

yields 

(3 .24) 

Rewriting Eq. (3.24) using the C-N scheme and substituting into Eq. (3.18), one 

obtains the discretized governing equation for the first computational point: 

(1-0) 2Kx { h2 + (C1 ~x - 1) h! - C~ ~x} + 
~2 C2 C2 

e 2Kx { h2+1 + (C1 ~x-1) hr1- c~+1 ~x }-
~x2 C2 C2 

(3 .25) 

l WP - 0 dW (hn+l_ h") - .e._ dW (h - hP ) = _s_ (hn+l_ h") 
3 dhs 1 1 3 dhm m m ~ 1 1 

Substitution of the boundary condition, Eq. (3 .22), for the last computational point into 

the Taylor-series expansion for hN around hN-1' at any time level, yields 

Rewriting Eq. (3.26) using the C-N scheme and substituting into Eq. (3.18), one 

obtains the discretii.ed governing equation for the last computational point: 

(3 .26) 

(3 .27) 
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Now all the requirements to solve Eq. (3 .21) have been met, except for the first time 

step, in which an initial condition is needed to start the computation. 

3.5.2.3. Initial Condition 

The initial condition for the governing equation, Eq. (3.1) or the working equation, 

E q. (3 .21 ), consists of given piezometric heads, h, at all computational points in the 

aquifer-matrix domain. 

3.5.3. Split-Direction Approach 
for Approximating Pollutant Transport Equations 

3. 5 .3 .1. Development of the Finite-Difference Equations 

The development of the finite-difference approximation uses the technique described in 

Section 3.5.2. The governing equation is recast to accommodate the split-direction approach 

and then the C-N scheme is applied to the equation. Equation (3.3) may be written, for the 

x-direction, as follows: 

Its discretization using the Crank-Nicholson scheme yields 

e {A q1~1 
- (A+B) q+i + B Ci:l} + 

(1--B) {A Ci-1 - (A+B) q1 + B Ci+d -

ft_{A ci+1ui:i+1 +(A - A)ci:t+Iui;i+l _A ci+1ui:i+1) -2 r i+ 1 i+ 1 r I 1 1 I 1-l 1- l 

(l-:) (Ar Ci+1 Ui+1 +(Ar -A1) qur - A1 Ci-1 Uf_1) -

Cn+l nm+l en nm ccn+l en) e S YYj - (1--B) sYYj ='\) j - j 

3 3 M: 
for i = 2, .... , N-1 

where A. and A1 indicate the area of the right and left sides of a finite-difference block. 

(3.28) 

(3.28a) 
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Eq. (3.28a) can be written, in matrix form, as 

[M]{C} = {F} (3.29) 

where [M] is a tri-diagonal matrix whose N-2 elements comprise contributions from the left 

hand side of Eq. (3 .28a); {F} is an N-2 element vector of known quantities from the right 

hand side of Eq . (3 .28a); and { C} is an N-2 element vector of unknown pollutant 

concentrations. 

In Eq. (3 .28a), there are N unknowns with (N-2) equations. Two boundary condition 

equations are required to solve Eq. (3.28a). 

3 .5.3.2. Boundary Conditions 

General boundary conditions (BC) of the problem are of the mixed type: 

dC 
EiC+ E1 ax =Er ( x,y,z,t) (3.30) 

where E1, Ei are arbitrary constants and E1 is a time-dependent constant. As mentioned in 

Section 3.5.2.2., several cases of boundary conditions may be handled as follows: 

a. Imposed concentration - "Dirichlet" type ~ (E2 = 0) 

E E 
Ci = E~ ~ set Pi = Ri = 0 and Qi = 1, Si = E~, for i = 1,2, ... , N (3 .3la) 

b. Imposed discharge- "Neumann" type ~ (E1 = 0) 

ac _Er 
ax -E2 (3.31b) 

c. Mixed-type boundary: 

(3 .31c) 

The technique described in Section 3.5.2.2. can be used on the boundary. Using the 

C-N scheme and changing the appropriate variables, Eq. (3.28) can be rewritten for the first 
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computational point as 

9 2Dx { c2+1 + ( E1 ~x -1) Ci+l - E~+l ~x } + 
~2 E2 E2 

(1-9) 2Dx { C2 + ( E1 M -1) Ci- E~ M } -
M2 E2 E2 

un+l cn+l _ m+1 cn+l un r'! _ un en 
(3.32) 

9 2 2 1 1 - (1-9) 2 ~ 1 1 -
M M 

Cn+l wn+l en n c n+t en 
9 s 1 -(1-9)~ = 1 - 1 

3 3 .6.t 

and for the last computational point as 

9 2Dx { CN~l+CE1 ~x-l)CN+1_E~+1 ~x} + 
M2 E2 E2 

(1-9) 2Dx { CN-1 - ( Ei ~x-1) CN - E~ ~x } -
M2 E2 E2 

Un+l cn+l un+l cn+l un en un en 
9 N N - N-1 N-1 _ (1-9) N N - N-1 N-1 _ 

M M 

(3.33) 

Cn+l wn+l en n c n+l en 
9 s N -(1-9) s WN = N - N 

3 3 .6.t 

In Eqs. (3.28a), (3.32), and (3.33), c. and w depend on whether w is coming from the 

aquifer-matrix itself or from megapores. The detailed derivation for both cases is explained in 

Appendix A. 

3.5.3.3. Initial Condition 

The initial condition for the governing equation, Eq. (3.3) or the working equation, 

Eq . (3.29), is given pollutant-concentrations, C, at all computational points in the aquifer

matrix domain. 

3.6. Numerical Solution for Megapores 

The numerical solution for megapores is achieved by first solving the hydrodynamic 

equations and then the pollutant transport equation. For hydrodynamic equations, the so-
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called Preissmann method is used. For pollutant transport, the split-process approach is used. 

First, the pure advection equation is solved by a characteristic method using the Holly

Preissmann technique. Second, the pure diffusion equation is solved by the Preissmann 

method. The advantage of solving the pollutant transport equation using the split-process 

approach is that one can then compute any complex network in a downstream-marching 

fashion. That is, the computation starts from the most upstream point in the network and 

proceeds until it reaches the most downstream node. The split approach saves computer time 

since it avoids inverting a large matrix as is done in a direct approach. 

3.6.1. Approximate Solution of Hydrodynamic Equations 

3.6.1.1. Strategy for Approximate Solution 

The megapore network, on which all megapore computations are carried out in the study, 

is manually generated based on data obtained from the study done by Hallberg et al. (1983). 

The gross megapore layout is presumed to follow gross flow paths from field data. The 

two-dimensional representation of the network is given in Figure 3 .4. All horizontal, almost 

horizontal, and vertical megapores are represented in Figure 3 .4. 

The megapore network algorithm is built on the principle of water mass conservation at 

looped nodes. A looped node is defined herein as a node (i.e., aquifer-matrix grid point 

through which the pipe network passes) which is either 

1. an entrance to or exit from the network, or 

2. a junction of multiple (more than two) flow paths. 
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Figure 3.4. Schematic Representation of the Megapore Network 

Thus, by this definition, nodes 1, 5, 6, 8, 12, 16, 20, 23, and 33 in Figure 3.2 are all 

looped nodes. Any unique flow path linking two looped nodes is defined herein as a link. In 
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connecting two looped nodes, a link may pass through other nodes which are not looped; 

these are called inline nodes. Any two adjacent nodes, be they inline or looped, are connected 

by a segment of a link called a pipe. A link may comprise only one pipe. Finally, any pipe 

can be divided into a series of computational points connected by computational reaches. A 

pipe always has one computational point contiguous with the node to which it is attached at 

each end. Figures 3.5 and 3.6 summarire these definitions. 

e 
CD 

Loopednode 

Inline node 

KEY 

a Pipe -[!] Link designation 

Figure 3.5. Megapore Topological Definitions 

a link 

••t------- positive flow 
dis i=l 2 3 - i=II(lp) direction u/s 

• Q I I Qt---r-1 --111----t-I --+--+--1·-
i=l 2 3 __. i=II(lp) i=l 2 3 4 __. i=II(lp) 

~~ 
lp=l lp=2 lp=LP 

Q = inline nodes • = looped nodes 

Figure 3.6. Definition Sketch for Link/Pipe Computation 



3.6.1.2. Nodal Continuity 

At any node m, and in particular at any looped node, the following statement of water 

continuity (inflow= outflow) must be satisfied at any instant (see Figure 3.7): 
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L,Q1;1 + Q~1 + ~+l = 0, m = 1, 2, 3, ... 
Ip 

(3.34) 

where n+ 1 denotes the end of the current time step; QI; 1 is discharge entering node m from 

pipe Ip; ~+ 1 is external inflow entering node m; ~+ 1 is inflow entering node m from the 

aquifer-matrix; and summation is over all the pipes attached to node m (one at the end of each 

attached link). 

Figure 3. 7 . Continuity at a Looped Node 

Now, the external inflow ~1 is a known quantity; indeed at boundary nodes, it is the 

sinkhole or other point inflow which drives the system. The pipe inflow can be written as 

(3.35) 

where Q~ is the latest iterative estimate of o;-1. and ..1.<4 is an unknown correction to that 

estimate. 
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The aquifer-matrix exchange inflow ~1 can be written as 

W!!+l = W ( hn+l h'.1:+-1) 
m m ' tjk (3 .36) 

That is, the aquifer-matrix exchange inflow is represented as a function of the pipe-network 

nodal head h~t 1 and the aquifer-matrix head hijt1 at the aquifer-matrix grid point associated 

with node m. The Taylor-series expansion of~+ 1 is 

(3.37) 

where hm and hijk represent the latest iterative estimates of h~t1 and hijt1, and Aflm and .1hijk 

are unknown corrections to those estimates. 

In fractional-step computations, the aquifer-matrix heads hfjt1 are held fixed during the 

pipe-network computation. Consequently, in Eq. (3.37), .1hijk = 0, and substitution of 

Eqs. (3 .35) and (3.37) into Eq. (3.34) yields 

L(Q1p+'1Q1p)+Q~t1 +Wm+ ~W Aflm=O, m=l,2, .. 
Ip m 

(3.38) 

L ( Qd + .1Qd) - L ( Qu + '1Qu ) + Q~t 1 +Wm + ~W Aflm = 0 , m = 1, 2, .. 
in out m 

or (3.39) 

Equation (3.39) is not yet in a form which can be used to compute head corrections, 

since Afl,,., as well as two or more '1Q1p, are unknowns. The key to the solution algorithm is 

the manipulation of the finite-difference approximations for the pipe-flow equations. These 

can be made to yield linear relations between discharge corrections .1Q., and nodal head 

corrections~ at looped nodes mm at either end of a link. In particular, for a link whose 

upstream node is denoted u and whose downstream node is denoted d, we can derive the 

following two relations: 
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(3.40) 

(3.41) 

where AQd and AQ11 are the discharge corrections at the pipe computational points contiguous 

with nodes d and u; Ahd and Ah
11 

are the head corrections at nodes d and u; and E
11

, F
11

, ~. 

EE
11

, FF
11

, and H~ are known coefficients derived in the link forward sweep as described 

below. 

In Eq. (3.39), the summation over the pipes connected to a node can be thought of as a 

summation over the connected links, as each connected pipe is simply the end of a link. 

Moreover, the summation implies consistent recognition of pipe sign conventions, with 

inflows taken as positive and outflows taken as negative. Substitution of Eqs. (3.40) and 

(3.41) into Eq. (3.39) yields 

(3.42) 

"""Ahm - Fu -Hu~ Qn+l w aw Al.. -o "-' Eu + m + m + (l1 Llilm -
out m 

As seen in Figure 3.8, in the "in" summation, Ahd represents the current node Al\n, and 

Ah.. represents the looped node at the other end of the inflow link. Similarly, in the "out" 

summation, Ah.. represents the current node Al\n, and Ahd represents the looped node at the 

other end of the outflow link. Therefore, Eq. (3.42) can be rewritten as 

(3.43) 

- ~ (Qd - : ) + L (Qu - ~ ) -Q~t 1 - Wm for m = 1, 2, . 
m out 
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Since Eq. (3.43) can be written for each of M looped nodes, the entire system of linear 

equations is: 

[A] {6hm} = {B} (3.44) 

where [A] is an M x M coefficient matrix whose elements comprise contributions from the 

left hand side of Eq. (3.43); {B} is an M-element vector of known quantities from the right 

hand side of Eq. (3.43); and {6hm } is the M-element vector of unknown corrections to 

heads at looped nodes. 

Solving Eq. (3.43) yields the head corrections {6hm}. Thus the looped nodal heads can 

be corrected immediately; their use in the link return sweep is described below. 

dis 

Figure 3.8. Summation Definition at a Node 

3.6.1.3. Pipe Flow Dynamics 

The coefficients of Eqs. (3.40) and (3.41), result from a so-calledforward sweep in 

which the appropriate pipe conservation equations are expressed algebraically through use of 

finite-difference approximations. 
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Using Preissmann's four-point scheme (Cunge et al., 1980) to discretize Eq. (3.6) for a 

reach between two computational points i and i+l (see Figure 3.6) yields 

[ 
A~l An+l An An ] 

q) ~ ~''* 1 + (1--<p) "i ~ i+-1 + 

( 
An+l + An+l An+ An ) ( hn+l hn+l hn hn 

g q> "i "i+ 1 + (1--<p) "i "i+ 1 q> i - i+-1 + (1--<p) i - i+-1 + 
2 2 & & 

(3.45) 

where the n and n+ 1 superscripts denote times 1n and 1n+i = tn + ~t; & denotes the length of the 

computational reach; and q> is Preissmann 's time weighting parameter, 0.5 ~ q> ~ 1.0. It 

should be noted that the full-pipe invariance of Q along the pipe obviates the need for a 

computational point subscript on Q. 

In Eq. (3.45), all quantities with n+l superscripts are unknown. Since the pipe area and 

conveyance are known quantities for the full-pipe situation, Eq. (3.45) can be written as 

F(Qn+l h~+l hn.+1) = 0 
, 1 , i+l (3.46) 

As long as the function Fis continuous in the neighborhood of the solution, Eq. (3.46) 

can be written as the first term of the Taylor-series expansion 

(3.47) 

in which Q, hi. and hi+l are the latest available estimate of Q"+1, hj+1, and hf:l. It is 

understood that the partial derivatives~·~~, and a~:l are evaluated at (Q", hi , hi+1). 
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Symbolically, Eq. (3.47) can be written as 

(3.48) 

(3.49) 

Armed with Eq. (3.48), one can now proceed with the derivations leading to 

Eqs. (3.40) and (3.41) for each link. The general idea is to conduct a forward sweep from 

the first (downstream) computational point of the first (downstream) pipe of a link, through 

successive inline nodes and pipes, to arrive at the last (upstream) pipe of the link. The "u" 

subscript of Eqs. (3.40) and (3.41) refers to this last point at the end of the forward sweep 

along a link. For the forward sweep derivations, it is useful to use a double subscript (i,lp) to 

designate point i on pipe Ip; LP denotes the last pipe on the link, and Il(lp) denotes the last 

point on pipe Ip. The detailed derivation of Eqs. (3.40) and (3.41) is presented in 

Appendix A. 

After a forward sweep for a link ends at the last point Il(LP) of the last pipe LP, one may 

deduce the following relation: 

Afln(LP).LP = En(LP).LP ~QLP + Fn(LP).LP + Hu(LP),LP Aflu (3.50) 

Eq. (3.50) is essentially equivalent to Eq. (3.41) with "u" denoting the last point of the link 

(Il(LP),LP) and "d" denoting the first point (1,1). From a similar derivation, one may deduce 

the following relation as well: 

Afln(LP),LP = EEn(LP)J..P ~Qi+ FFn(LP),LP + HHn(LP),LP ~h1,1 (3.51) 

It should be noted that this equation is the same as Eq.(3.40), where "u" denotes the last 

point of the link and "d" denotes the first one, as in Eq. (3.41). 
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All the influence coefficients of Eqs. (3.50) and (3 .51), that is E, F, H, EE, FF, and 

HH, are computed during the forward sweep. Thus, head corrections for all looped nodes 

can be computed using Eq. (3.44). A "backward sweep," in which the discharge correction 

and the head correction for all computational points in each pipe are computed, can now be 

performed for each link. At the end of a complete sweep, piezometric head and discharge of 

all pipes in a network are updated. One can thus proceed to the next time step computation. 

The detailed derivation of influence coefficients and their initialization is presented in 

Appendix A. 

3.6.2. Approximate Solution for Pollutant Transport Equations 

3.6.2.1. Strategy for Approximate Solution 

Sauvaget (1982) points out that Eq. (3.7) represents two physical phenomena; i.e., 

advection and diffusion. The mathematical nature of the advection equation, Eq. (3.52), and 

the diffusion equation, Eq. (3 .76), in which the diffusion equation poses fewer numerical 

problems than the advection one, justifies the adoption of different solution methods. Thus, 

the solution of Eq. (3 .7) is split into two processes for each time step; Eqs. (3.52) and 

(3.76) are solved successively by computational schemes that are appropriate to each of them. 

Usseglio-Polatera and Chenin-Mordojovich (1988) show that process-splitting is 

particularly attractive for 2-D and 3-D simulations in water resources. Within each elementary 

fractional step, the cost of using stable implicit procedures or specially adapted schemes is 

small, especially when space-splitting is combined with process-splitting. This combination 

leads to accurate, powerful and cost-effective schemes with no formal limitations. 

Furthermore, this splitting framework makes possible a combination of competing numerical 

techniques (characteristics, finite-differences, finite elements) when these techniques are 

complementary. 

The extension of process-splitting to a megapore network is straightforward; the 

approach permits calculation of pollutant concentration by proceeding from the most upstream 
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to the most downstream point in the network. This is done by (1) ordering all computational 

points from upstream to downstream and, (2) applying the process-splitting technique at each 

megapore and mass conservation law at each node. Since the approach avoids inverting a 

large matrix, overall computer time used in the computations decreases. 

3.6.2.2. Advection Computation 

The advective process is described by the following equation: 

ac ac 
Aat+AU ax = 0 

ac ac 
or -+U-=0 

dt ax (3.52) 

Since the velocity U is independent of the concentration C, one may write U = ~ and rewrite 

Eq. (3.52) as 

ac +.dx. ac = 0 or .dC. = 0 
dt dt ax dt 

(3.53) 

This means that the value of C attached to a fluid volume remains constant during the 

movement along its characteristic line. Now the integration of Eq. (3.53) along this line as 

depicted in Figure 3. 9 yields 

Cn+l - c" 
i - ~ (3 .54) 

where er+ 1 is the pollutant concentration at node i at the current time step, and c~ is the 

pollutant concentration at the foot of the characteristic line at the previous time step. The term 

C~, in the right hand side of Eq. (3.54), is estimated using the Holly-Preissmann third-degree 

interpolating polynomial as described in the following paragraphs (see Holly et al., 1977). 

Estimating C~ using the concentration C and gradient concentration CX from the two 



neighboring points of x by constructing the third-order polynomial gives 

C~:::: y(a.) = Aa.3+ Ba.2 + Da. + E 

in which 

Xi-k - x U~t - kL\x c k a.= = = r-
~ ~ 

and 

is the Courant number and k is the integer part of Cr. 

n+l 

n 

...... ...... ...... 
j: ...... 
~ ...... ... 

i-k-1 i-k 

U~t-ki\x 

__ ... __ ... ...... 

------cn+l 
i 

... .----.-
... - ...... ...... 

i-1 i 

U~t 

Figure 3.9. Characteristic Curve on Advection Grid System 
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(3 .55) 

(3 .56a) 

(3.56b) 

The four coefficients A, B, D, and E can be evaluated such that the following four 

conditions are satisfied: 

y(O) = Cj_k; y(l) = Ci-k-1; ddy] = CXj_k ; ddy] = CXj_k-1 
Xa = O X a= l 

Through the chain rule of differentiation, ~ = :~ ~~ = :~ ~ which is applied to 

Eq. (3.55), the four coefficients A, B, D, and E can be computed as 

(3.57) 



A= - 2 Ci-k-i + 2 Ci-k - .tlx eXj_k-i - .tlx eXj_k 

B = 3 Ci-k-i - 3 Ci-k + .6x eXj_k-i + 2 .6x eJG_k 

D =-.tlx e~.-1-... 

E = C!J ,_ 1-... 

Substitution of Eq. (3.58) into Eq. (3.55) yields 

in which 
ai = ex2 ( 3 - 2 ex) 

a2 = 1 - ai 

a3 = ex2 ( 1 - ex ) .tlx 

<4 = - ex ( 1 - ex )2 .tlx 

where .6x = xi-1< - xi-1<-i 

One can also evaluate ex~ from Eq. (3.59) as 

in which 
bi = 6 ex ( ex - 1 ) 

.6x 
b2 = - bi 
b3= ex(3ex-2) 
b4 = ( ex -1 )( 3 ex - 1 ) 
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(3.58) 

(3.59) 

(3.60) 

(3.61) 

(3.62) 

From Eq. (3.59) it is obvious that to solve the problem completely one has to keep track 

of not only the concentration er but also exr for the next time step. This can be done by 

taking the derivative of Eq. (3.52) with respect to x: 

1-(ae) + u i_(ae) =-ae au 
ax dt ax ax ax ax 



or 

or 

a a au 
-(CX) + U-(CX) = -CXat ax ax 
d(CX) =_ex au 

dt ax 
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(3.63) 

For the gradient concentration CX, one may write the direct analogy of Eqs. (3.53) and 

(3.54) using the technique used to compute concentration C: 

CXj1+1 = exg - CX-dt 1tn+l au 

~ n ax 
(3.64) 

This is approximated as 

cx~+t = CX~ - 61 [ CX~ [au] + CXj+l [au] n+l l 
1 

'> 2 '> ax ~ ax i 

Solving for exr+ 1, one obtains 

I 
1 _ 61 [au] I ex~+l = ex" 2 ax ~ 

1 ~ 61 [au] n+l 1+ - -
2 ax i 

(3.65) 

where ex~ can be evaluated using Eq. (3.61) 

3.6.2.2.1. Boundary Conditions 

From Eq. (3.54), only one upstream boundary condition is needed to solve the system. 

A problem appears when the characteristic curve extends to the upstream boundary. From 

Figure 3.10, Eq. (3.53) can still be used to get 

Cn+l _ c z 
j - "' 

where er 1 is the pollutant concentration at node j at the current time step and c~ is the 

(3.66) 
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pollutant concentration at the foot of a characteristic line at the boundary. 

As previously mentioned, to keep track of CXj, one may follow the same procedure as 

described in Eq. (3.64): 

1tn+l au 
CXj+1 = CX~- CX-dt ax 

'l' 

(3.67) 

A new parameter is defined as follows: 

(} = tn+ 1 - tn = ..z_ 
L\t L\t 

(3.68) 

From Figure 3 .10, one may deduce that It = G~~~x = G~~) for j ~ k. Thus, the parameter in 

Eq. (3.68) can be rewritten as 

(j-1) 
(}=-

Cr 
(3.69) 

Eq. (3.55) cannot be used to calculate C~. Nevertheless one may estimate C~ using 

linear interpolation: 

C~ = y$) = A(}+ B (3.70) 

Coefficients A and B are determined by the following conditions: 

(3.71) 

Thus one may rewrite Eq. (3.70) as follows: 

(3.72) 
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Rewriting Eq. (3.52) as 

(3.73) 

then using the chain rule of differentiation ~ = - ~ :~ ':: = :~ U~t and substituting both 

equations into Eq. (3.72) yields the following expression: 

dy cn-cn+l 
C~=- = 1 1 

dx U~t 

UIS 
Boundary 

M: z 

~ 
i-k 

---

(j- 1) ~ 

U~t 

------ --
cn+l 

j 

i-1 

Figure 3.10. Characteristic Curve on the Upstream Boundary 

The gradient concentration CX can be evaluated by rewriting Eq. (3 .65) as 

cxr1 =ex~ 
1 _ ~~t [au] 

2 ax "' 
~~t [au] n+l 1+- -
2 ax j 

1 

C n+l 
i 

(3 .74) 

(3.74a) 

If the boundary concentration C';+1 is given, the problem can be solved by first using 

Eq . (3 .73) to calculate CX';+1 and then by substituting Eqs. (3.72) and (3.74) into 



Eq. (3 .66) and Eq. (3 .74a)tocompute cy+1 andCXy+1. 

The concentration at the upstream boundary is computed using the same mass 

conservation law as for any node in the megapore network. In using the mass conservation 

law, particularly for pollutant conservation, the present study assumes that advection flux is 

dominant compared to diffusion flux. Therefore at any node m, the following statement of 

pollutant flux continuity (inflow= outflow) must be satisfied at any instant: 
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~nn+lron+I+Qn+lcn+l+wn+lc =0 m 1 2 3 
~'<:Ip ~Ip m m m s • = • • • ··· (3 .75) 
Ip 

where n+ 1 denotes the end of the current time step; Qi; 1 is discharge entering node m from 

pipe Ip; er; 1 is pollutant concentration entering node m from pipe Ip; ~+ 1 is external inflow 

entering node m; C~t 1 is external pollutant concentration entering node m; w:h+ 1 is inflow 

entering node m from the aquifer-matrix; Cs is the latest estimate of pollutant concentration of 

node m from the aquifer, and summation is over all the pipes attached to node m. All 

discharges and concentrations in Eq. (3.75) are known or given quantities except for a 

particular er; 1, which is the concentration at the upstream of a pipe whose flow is leaving the 

corresponding node. Therefore, the upstream boundary condition in the advection 

computation for each pipe can be obtained from Eq. (3 .75). 

3.6.2.2.2 . Initial Condition 

An initial condition is needed to start the computation. The initial conditions for the 

governing equation Eq. (3.52) or the working equations (3 .54), (3.65), and (3.75) are given 

concentrations C and gradient concentrations CX at all computational points in the domain. 



3.6.2.3. Diffusion Computation 

The diffusive process is described by the following equation: 

ac a ac 
A-= -(A Ex-) 

dt ax ax 

Eq. (3.76) is a second-order partial differential equation that can be transformed into an 

equivalent system of two equations of the first order: 

ac a 
A at = ax (A Ex CX ) 

ac =ex 
ax 

in which concentration C and its gradient CX are the dependent variables. Using the 

following notation such that 

6C=ci:i+1 -CT 
1 1 1 

6CXi = CXf + 1- CXf 
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(3.76) 

(3.77) 

(3.78) 

and a discretization scheme devised by A. Preissmann, which adopts the approximations, 

f(x t) =ft_ (fi:t+l + fi:t+ 1) + l-B (f':l + f ':1 ) ' 2 1 1- l 2 1 1- 1 

= ~ (Mi+ 6fi-I) + t (fi + f f_1) 

"'If rn+l rn+l fn fn 
_o = 9 i - i-1 + (1-B) i - i-1 
dX 6x 6x 

= fi-c Mi -6fi-1) + 1x (fi - fi_1) 



at - (fi1
+

1 - f i) + (f i-i1 - f i-1) 
at- Ut 

= iit (Mi+ £\fi-1) 

Eq. (3.77) becomes the discretired system: 

fx (£\Ci - £\Ci-1) + 1x (Cj - Ci-1) = ~ (£\CXi + £\CXi-1) + t (CXj + CXf_1) 

,;.t (£\Ci+ £\Ci-1) =A Ex (fx ( £\CXi -£\CXi-1) + 1x (CXj - CXf-1)) + 

~~ Ex {~ ( £\CXi + £\CXi-1) + t (CXj + CXf_1)) 

This system can be rewritten as 

where 

ait\Ci + a16CXi + a36Ci-1 + C46CXi-l +as= 0) 

bi6Ci + bi6CXi + b36Ci-1 + b46CXi-1+bs=0 

a1 =_fl rue 
a1= - il 

2 
a3 = - a1 

C!I - CT 1 CX!i + CX!! 1 as= 1 1- _ 1 1-

rue 2 
bi= _ _A_ 

Ut 

- aA A 
b1 - 9 Ex (0.5 ax + rue ) 
b3 =bi 

aA A 
b4 = 9 Ex (0.5 ax - rue ) 

b _ aA CXj + CXj_1 + E A CXj-CXi_1 
S - Ex ax 2 x rue 

for i = 2, 3, ..... , N 

Eq . (3. 79) may be solved efficiently using the classic double-sweep algorithm. 
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(3.79) 
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Elimination of ~cxj.1 from Eq. (3.79) yields 

(3.80) 

where 

(3 .80a) 

To obtain a relationship that is useful for computing the influence coefficients of the double

sweep method, let ~CXj. 1 = Qj.1 ~C1_ 1 + R,.1• Substituting this relationship and Eq. (3.80) 

into Eq. (3.79), and solving for ~cxi, yields 

(3 .81) 

where 

(3.81a) 

One can solve the system of Eq. (3.79) recursively, using Eqs. (3.80) and (3.81), 

given the appropriate boundary conditions. The so-called forward sweep starts by initializing 

Q1 and R1 using the imposed upstream boundary condition of the type 

(3.82) 

The sweep continues for i = 2,3, .. .,N through computation of the influence coefficients L,.p 

After finishing the forward sweep, the algorithm starts the backward sweep by 

initializing either ~CXN or ~CN from the imposed downstream boundary condition. The 

computation continues until it reaches the upstream end by calculating 
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respectively, for each computational point. At each computational point one can update the 

solution directly by computing 

(3.83) 

3.6.2.3.1. Boundary Conditions 

The boundary condition for the diffusion computation is of the Neumann type; i.e., an 

imposed concentration at each of the boundaries. It is possible with this scheme to impose a 

condition of the following type at each of the boundaries of the model: 

a t\Ci = b t\CXi + d => for i = 1 and N 

where a, b, and d are known coefficients. In the present study, at each boundary, the 

concentrations at the end of the advection computation are used as boundary conditions. 

3.6.2.3.2 . Initial Condition 

(3.84) 

In each time step, the initial condition for the diffusive stage is taken from the end 

condition of the preceding advective stage. Thus at all computational points, the values of the 

concentrations C and their gradients CX at the end of the advection computation are used as an 

initial condition for the following diffusion computation. 

3.6.2.4. Computation Procedure 

For one time step, the advective and diffusive computations can be performed for each 

pipe over the whole network by marching from the most upstream pipe to the most 

downstream one. Therefore, before starting the pollutant transport computation, it is essential 

that all nodes of the megapore network be ordered in an upstream to downstream fashion. 

The first computation is started by using the initial condition for the advection stage in each 

pipe. For each pipe, the computation is carried out as described in the following paragraphs. 
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3.6.2.4.1. Advective Computation 

(1) Compute concentration cr+l using Eq. (3.59) if the characteristic line does not hit 

the upstream boundary. If the characteristic hits the upstream boundary, use Eq. (3.72) to 

compute concentration cr+1. 

(2) Compute the gradient concentration CJq1+1 using Eq. (3.65) if the characteristic line 

does not hit the upstream boundary. If the characteristic hits the upstream boundary, use 

Eq. (3.74a) to compute concentration CJq1+1
• 

3.6.2.4.2. Diffusion Computation 

( 1) Use the concentration at the end of the advection stage as the initial condition of the 

diffusion stage. 

(2) Start the forward sweep by calculating the influence coefficients L;.1, M;.p N;.1, Q;, 

and R; from the first to the last computational points. Initialization of the influence coefficients 

Q1 and R 1 can be performed by using the boundary condition, Eq. (3.84), for the first 

computational point. Recursion relationships as described in Eqs. (3.81a) and (3.80a) can be 

used to compute the influence coefficients up to the last computational point. 

(3) Start the backward sweep by initializing ACN and using the boundary condition 

(3.84) for the last computational point. Compute the corrections ACX; and AC; from the last 

computational point to the first computational point using Eqs. (3.81) and (3.80). The 

concentration C and its gradient CX can be updated directly using Eq. (3 .78). 

3 .7 . Iterative Coupling of Megapore and Aquifer-Matrix Computation 

As previously mentioned, a fractional-step method is used to approximate the governing 

equations. In each time step during the simulation, the computations in the megapore network 

and those in the aquifer-matrix are coupled through the source or exchange term of the 

governing equation. For clarity, Eqs. (3.15) and (3 .75) are repeated below. 
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(3.15) 

~nn+lnn+l+Qn+lcn+l+wn+lc =0 m 1 2 3 "'-''°lip ~Ip m m m s ' = ' , , · (3 .75) 
Ip 

where n+ 1 denotes the end of the current time step; hm is the latest estimate of the pipe 

piezometric head; ~+l is inflow entering node m from the aquifer-matrix; Cs is the latest 

estimate of pollutant concentration of node m from the aquifer, and all other symbols are as 

previously defined. 

In each time step, the last terms in Eqs. (3.15) and (3.75) represent the latest estimate of 

exchange mass between the megapore network and aquifer-matrix. The fractional-step 

computations have to be carried out until this estimate converges according to some criterion. 

Thus the fractional step of the hydrodynamic computation will stop when the latest estimate of 

the megapore piezornetric head hm in Eq. (3 .15) satisfies a certain convergence criterion, after 

which the pollutant computations begin. As with the hydrodynamic computation, the 

fractional step of the pollutant transport computation will stop after the latest estimates of 

pollutant fluxes (~+l C5) in Eq. (3.75) satisfy a certain convergence criterion. Thus, in each 

time step, the fractional-step computations are iterated until the convergence criterion is 

satisfied. 
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CHAPTER IV 

TEST AND APPLICATION 

4.1. Introduction 

This chapter presents tests and applications of the computer program Labyrinth. First, 

the model is compared to analytical solutions on a simple domain to verify the numerical 

techniques used. Second, the model is applied to the Big Spring Basin. Sensitivity analyses 

of important system parameters of this basin (megapore diameter, roughness coefficient, 

hydraulic conductivity of the aquifer, and classes of megapore diameter) are conducted to 

identify interaction between the parameters and model components. Simulation of dye trace 

experiments conducted in the basin is performed to demonstrate the capability of the model. 

4.2. Schematic Model 

4.2.1. Hydrodynamic and Pollutant Transport in a Single Megapore 

In saturated cases. the verification of the numerical method for the hydrodynamic 

equations is straightforward. Since the hydrodynamic equations are based on the mass and 

momentum conservation laws, in saturated cases where the megapore is flowing full, the input 

and output hydrographs must be identical. furthermore, at steady-state. piezometric drop along 

the megapores must satisfy the Darcy- Weisbach equation. 

The more important verification deals with the numerical method for the pollutant 

transport equations. To verify this method, a pollutant having a Gaussian distribution in space 

is given as an initial condition. From now on such a distribution of pollutant will be referred 

as a Gaussian cloud. The spreading of the cloud. as well as its position in the megapore, are 

calculated using the numerical techniques described in Section 3.6. The analytical solution of 
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the transport of this Gaussian cloud is as follows (Fischer et al., 1979): 

_ M ([x-Ut]2
) C(x,t) - Y41tlA exp 4Dt) (4.1) 

where t indicates time; C is pollutant concentration as a function of x and t; M is an initial slug 

of mass introduced at time zero at the x origin; D is the diffusion coefficient; and U is the 

advective velocity of flow. 

The initial condition of the present test is computed using Eq. (4.1) with the following 

values: Mis lOS units, tis 104 seconds, Dis 10 m2/s, and U is variable. Using this initial 

condition, pollutant concentrations along the megapore are computed using the numerical 

technique described in the previous chapter. The split-process method requires, first, that a 

natural upstream boundary be imposed for advection, and second, that both upstream and 

downstream conditions be imposed for diffusion. Thus, zero pollutant flux is imposed at the 

upstream boundary, while at the downstream end, a boundary condition is not needed since 

the concentration at the end of the advection step is imposed for diffusion. The values of 

subreaches, .rut; total number of subreaches, NDX; time increment, ~t; and total number of 

time steps, NOT, are 100 m, 200, 200 seconds, and 100, respectively. Figure 4 .1 presents 

the results of the numerical and analytical solutions of the pollutant transport within a single 

megapore for two values of the advection velocity, U. In the figure, the two solutions are 

plotted at different points to distinguish between them. As depicted in Figure 4.1, the 

analytical and numerical solutions give graphically indistinguishable results. In Figure 4 .1, 

the analytical solution is computed using Eq. ( 4.1 ). 

As explained in the previous chapter, the split-process approach is used to compute the 

pollutant advection and diffusion despite the fact that, physically, these processes occur 

simultaneously. Since the advection equation, Eq. (3.52), and diffusion equation, 

Eq. (3 .76), are solved successively for each time step, it is necessary to impose conditions at 

each of the model boundaries for each stage of the process. Nevertheless, the numerical 

solution still agrees quite well with the analytical one, even though the Gaussian cloud is still 

at the upstream boundary as depicted in Figure 4.1.b. Thus, the treatment of boundary 



conditions in the numerical technique used in the present study is well justified. 
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Figure 4.1 . Analytical and Numerical Solutions of the Pollutant Transport Equation 
within a Single Megapore for Various Values of Courant Number and NOT 

Figure 4.1 shows that the imposed initial conditions in the above two cases are 

spreading over 13 reaches. Undoubtedly if the initial conditions had spread over a narrower 

region, the numerical results would have shown some oscillation at the feet of the distribution 

and some discrepancies at the peak. Nevertheless, the result will still be reasonable, since it is 
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well known that the characteristic method is the best method to solve advection-dominated 

problems. 

4.2.2. Hydrodynamic and Pollutant Transport in an Aquifer-Matrix 

In an aquifer-matrix, as far as the analytical solution is concerned, the hydrodynamic 

equation, Eq. (3.1), is a specific case of the pollutant transport equation, Eq. (3.3). That is, 

Eq. (3.3) contains advective terms from pore velocities, while Eq. (3.1) does not. In other 

words, Eq. (3.1) is, in fact, Eq. (3.3) with pore velocities equal to zero. Source terms are 

omitted in both equations. In this section, therefore, only Eq. (3.3) is compared to the 

corresponding analytical solution. 

The analytical solution used for comparison is the one that deals with two-dimensional 

plane dispersion. Consider a homogeneous, isotopic porous medium with a unidirectional 

steady-state flow with seepage velocity U. A Cartesian coordinate system is chosen with the x 

axis oriented along the direction of flow (see Figure 4.2). Javandel et al. (1984) state that the 

governing equation for this problem can be written as 

(4.2) 

where t denotes time; C is pollutant concentration; D .. and DY are the dispersion coefficients in 

the x and y directions, respectively; U is a unifonn seepage velocity; A. is the radioactive decay 

constant; and R is the retardation factor. 

Assume that initially the medium is free of a particular solute species, and that at a certain 

time, a strip-type source with length 2a, orthogonal to the direction of groundwater flow, is 

introduced along the y axis. If the concentration of the solute decays exponentially with time, 

the initial and boundary conditions of this mathematical model may be written as 

C(O, y, t) =Coe-at - a $ y $ +a 

C(O, y, t) = 0 other values of y 
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Figure 4.2. Schematic Diagram Showing the Two-Dimensional Plane Dispersion Model. 

Cleary and Ungs (1978) present the following analytical solution to the above model: 

Cc ) _ Co x (U x ) 
x, y, t - 4Y7tDx exp 2Dx - a.t 

(4.3) 

Javandel et al. (1984) provide a numerical solution of Eq. (4.3) for the following parameter 

values: a. = A. = 0/day; R = 1; a = 50 m; U = 0.1 mis; D
1 

= 1 m2/day; 

DY = 0 .1 m2/day; and t = 100 days. This numerical solution is compared to those obtained 

by the numerical method used in the Labyrinth code. 

In application of the Labyrinth code to this test case, the pollutant source is extended to 
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three dimensions in which the height of the source is the same as the height of the aquifer, and 

the dispersion coefficient in the z direction, Dz, is set at zero. The test is done in a three

dimensional aquifer-matrix whose lengths in the x, y, and z directions are 200 m, 300 m, 

and 150 m, respectively; L\x is 10 m, D.y are 5 m and 10 m, and D.z = 10 m; the hydraulic 

conductivities in the x, y, and z directions are 2 m/day, 2 m/day, and 0 m/day, respectively; 

and the specific storage, S, is 4.37 x 10~/m. At x = 0 m and x = 200 m, piezometric 

heads of 10 m and 0 m, respectively, are imposed to get a uniform seepage velocity of 

0.1 m/s as required in the analytical solution. A plane-type pollutant source of 1000 ppm is 

imposed along the x = 0 m plane where the width is 100 m (in they direction) and the 

height is 150 m (in the z direction). All other parameters are the same as those used in the 

analytical model. 

The results of this test and the analytical solutions, presented in Figure 4.3, show that 

the two solutions agree fairly well. The results also show that smoothing and phase 

differences occur. The governing equation of pollutant transport for the aquifer-matrix, 

Eq. (3.3), represents two physical mechanisms: advection and diffusion. It is well known 

that advection poses more numerical problems than does diffusion because of an artificial 

diffusion coefficient introduced by the approximate nature of the finite-difference scheme used 

to approximate the governing equation (Cunge et al. 1980). This artificial coefficient may 

cause numerical diffusion (smoothing) and an oscillation-like behavior which results in phase 

shifting. Nevertheless, the result of this test agrees fairly well with the analytical solution. 

This is understandable because in an aquifer-matrix the seepage velocity is usually small, thus 

the advection process does not cause severe problems for the numerical results. 
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Figure 4.3. Analytical and Numerical Solutions of the Pollutant Transport Equation in 
an Idealized Aquifer-Matrix after t = 100 days 

4.3. The Big Spring Model 

This section presents a test of the Labyrinth code for the Big Spring Basin, Clayton 

County, northeast Iowa. First, sensitivity analyses of important system parameters of this 

basin (megapore diameter, roughness coefficient, hydraulic conductivity of the aquifer, and 
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classes of megapore diameter) are conducted to identify interaction between these parameters 

and model components. Second, simulation of dye trace experiments conducted in this basin 

is performed to demonstrate the capability of the model. 

4.3.1. Hydrogeologic Setting of the Big Spring Basin 

The Big Spring Basin is located within the Paleozoic Plateau region of northeast Iowa 

(see Figure 1.2). Through most of the basin, the landscape is moderately rolling but ranges 

to steeply sloping as the Turkey River valley is approached in the southern portion of the area 

Total relief within the basin is approximately 420 ft (130 m) (Hallberg et al., 1989). The 

basin has a well-integrated surface drainage network. Most of the groundwater basin 

coincides with the surface-water basin of Roberts Creek. Loess-derived soils, primary 



Downs, Fayette, and some Tama soil, occupy over 70% of the land surface (Hallberg et al., 

1983). 
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The bedrock of the basin comprises of the Galena Group carbonate rocks, with the 

uppermost unit being the overlying Maquoketa Formation. The lower part of the Maquoketa 

is composed of shaly carbonates, while the upper Maquoketa is shale and claystone. The 

shaly carbonates of the lower Maquoketa do not significantly retard water movement and 

generally form open hydrologic connections with the Galena aquifer. The shales and 

claystones of the upper Maquoketa Formation are the uppermost bedrock in the western 

portion of the basin. These low permeability strata retard the downward movement of 

groundwater toward the Galena aquifer, and in the western portion of the basin the aquifer is 

effectively confined. This area provides a natural background area for the groundwater in the 

Galena aquifer (Hallberg et al., 1989). 

Solutional processes in the Galena aquifer have developed sinkholes. The drainage area 

to most individual sinkholes is relatively small. However, a number of these sinkholes are 

associated with surface drainage basins, and following extreme rains or snowmelt, runoff 

from these basins is captured by the sinkholes and diverted into the Galena aquifer. The 

surface area draining to sinkholes covers about 11 % of Big Spring groundwater basin 

(Hallberg et al., 1989). 

4.3.2. Introductory Remarks to the Model 

This section presents a test of the Labyrinth code for the Big Spring Basin, Clayton 

County, northeast Iowa. The actual geometry of the aquifer is used in this model, but the 

initial and boundary conditions are fictitious. Aquifer and megapore parameters such as 

hydraulic conductivity and specific storage of the aquifer, and diameter and roughness of the 

megapore are not available from field measurements. Therefore, all parameters except 

megapore diameters are taken from published literature. Sensitivity analyses are performed on 

several parameters to get a better understanding of their effects on flow and pollutant 

responses at Big Spring. 
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4.3.3. Definition of the Model Domain 

The model domain is deduced from the topography of the Big Spring Basin. First, the 

contours of the basin at the surface grid points are extracted from USGS contour maps. 

Second, bottom and surrounding boundaries of the domain are determined using hydrologic 

cross-sections and the divides of the Big Spring Basin, respectively (Hallberg et al., 1983). 

Third, all boundaries are shifted slightly to conform with the requirements of the finite

difference approach. In order to completely solve the working equations, Eqs. (3.21) and 

(3 .29), a minimum of three computational grid points must be maintained in each axis 

direction. Applying this requirement to the Big Spring Basin yields a three-dimensional 

domain, shown in Figure 3.3, that is suitable for the finite-difference method and from 

which, a finite-difference grid is generated. This grid consists of 16 subreaches in the x 

direction, 13 subreaches in the y direction, and 45 subreaches in the z direction. The values 

of these subreaches are 5250 ft, 5250 ft, and 10 ft, respectively. The value of the horizontal 

subreaches, 5250 ft, is based on red grids from the USGS map (indicating U.S. public lands 

survey: section). The value of vertical subreaches, 10 ft, is chosen in consideration of 

computer time and memory requirement. 

4.3.4. Initial and Boundary Conditions 

Hypothetical initial and boundary conditions are used for sensitivity analysis. These 

conditions correspond to saturated cases, for which all governing equations described in the 

previous chapter are valid. 

All computations in the sensitivity analysis start with a steady-state initial condition. This 

is achieved by (1) imposing boundary conditions: a piewmetric head of 20 ft at Big Spring 

(Hallberg et al., 1983) and, at certain regions of the aquifer-matrix, piewmetric heads that are 

equal to their surface elevation; and (2) at time i.ero, setting the discharges in all megapores at 

zero and all piewmetric heads equal to the highest surface elevation in the domain ( = 440 ft). 
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This case is run with a total time step, NDT, of 1500, which corresponds to 3,000 hours 

prototype time, at which the discharge at Big Spring becomes steady. 

The following boundary conditions are imposed: (1) on the aquifer-matrix, piezometric 

heads equal the surface elevation at I = 2 to 4 and J = 2 to 4, and zero flux at any other 

aquifer-matrix boundary; (2) at Big Spring, the piezometric head equals 20 ft and; (3) zero 

discharge at all sinkholes. 

Several cases are run to get steady-state initial conditions for one set of megapore 

diameters and one set of hydraulic conductivities of the aquifer-matrix. As shown Table 4.1, 

Dilarnater et al. (1977) present possible values of the hydraulic conductivity and their 

corresponding specific storage for three kinds of rock. It is assumed that the values of the 

hydraulic conductivity and their corresponding specific storage for dense rocks are appropriate 

for the Big Spring aquifer; therefore in this test the values of 7. 6 x 10-6 f/s, 7. 6 x 1 o-s f /s, 

and 9. 5 x 10-4 f/s are used. 

Table 4 .1. Typical Values of Hydraulic Conductivity, K, and 
Specific Storage, S, after Dilamater et al. (1977) 

Rock Name K (f/s) s (ft-1
) 

Dense Rocks 7.6 x 10-6 2.06 x 10-7 

7 .6 x 10-s 1.33 x 1~ 
9.5 x 10-4 8.99 x 10-6 

Sands 7 .6 x 1 o-s 3 .11x10-4 
3.8 x 10-4 1.06 x 10-4 
3.8 x 10-3 3.57 x 10-s 

Clays 3.8 x 10-1 3.05 x 10-3 

3 .8 x 10-6 1.54 x 1~ 
1. 9 x 1 o-s 3.08 x 1 o-s 

A wide range of megapore diameters (5 to 30 ft) is used. This range is assumed to cover 

all possibilities of actual megapore diameters. Henceforth, the term "megapore diameter" is 
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used to indicate the "equivalent megapore diameter"; i.e., the diameter of a circular megapore 

that has the same wetted area as the real megapore in the field. 

Figure 4.4.(a) presents the steady-state discharge calculation for a hydraulic 

conductivity, K, of 7 . 6 x 1 o-s ft/s, and several megapore diameters. From these results, the 

steady-state discharge at Big Spring appears to be constant for megapore diameters greater 

than 5 ft. This is valid because of the way the boundary conditions are imposed. That is, for 

diameters greater than 5 ft, the megapore network is capable of transporting the maximum 

discharge due to the piezometric gradient imposed. For megapore diameters less than 5 ft, 

delivering the same amount of maximum discharge, needs piezometric heads with a greater 

gradient than the one imposed. Thus, for the given boundary condition, discharge at Big 

Spring is constrained by the imposed piezometric head only for diameters greater than 5 ft, 

while for diameters less than 5 ft, the megapore diameter also constrains the system. 

Figure 4.4 (b) presents steady-state discharge at Big Spring for megapore diameter, 

D = 20 ft and several hydraulic conductivities. For a given value of the piezometric 

gradient, the results show that the discharge is linearly dependent on the hydraulic 

conductivity; this is in agreement with Darcy 's law. 

Steady-state discharge serves as baseflows for the Labyrinth code. Field data show that 

Big Spring baseflows never exceed 80 cfs. During wet conditions, which prevail throughout 

the entire March- June period, total basin discharge on the average is 60 cfs (Hallberg et al., 

1983). Comparison between this data and the results as depicted in Figure 4.4 (b) gives a 

clear indication that the value of 9. 5 x 10-4 ft/s for the hydraulic conductivity of the aquifer

matrix is too high. This value, therefore, is not used for the next tests. 

4.3.5. Sensitivity Analysis of Parameters Affecting the Big Spring Basin 

Model sensitivity analysis, an important part of the model development process, helps to 

identify interaction among model components and parameters. By revealing model parameters 

having insignificant effects on the results, sensitivity analysis permits identification of 



parameters imponant to the model. This identification helps in deciding what data must be 

collected from the field. 
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(b) Steady-State Discharge at Big Spring for Various Values of Hydraulic Conductivity of 
the Aquifer-Matrix and Megapore Diameter, D = 20 ft 

Figure 4.4. Steady-State Discharge at Big Spring for Various Values of Megapore 
Diameter and Hydraulic Conductivity of the Aquifer-Matrix 
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In this section sensitivity analysis is performed on megapore diameter and several 

parameters of the megapore and aquifer-matrix - dispersion coefficient, roughness of the 

megapore, and the hydraulic conductivity of the aquifer-matrix. This analysis is used to 

identify the important parameters affecting groundwater flow and pollutant transport in the Big 

Spring Basin. 

4 . 3. 5 .1. Analysis of Sensitivity to Megapore Diameter 

Since there are no field measurements of megapore diameters in the Big Spring Basin, it 

was decided to make the preliminary analysis on a wide range of megapore diameters ( 4 ft, 

5 ft, 10 ft, 15 ft, 20 ft, and 25 ft). From these preliminary results, the range of diameters 

could be narrowed and the analysis repeated in more detail. 

The analysis is done by varying the megapore diameter while holding the following 

parameters constant: hydraulic conductivity, K = 7.6 x 10-s fps; specific storage, 

S = 1. 3 3 x 10-6 /ft; and the megapore Strickler coefficient, k1 = 30. The steady-state initial 

condition and boundary conditions given in Section 4.3.4 are used in this analysis. An 

inflow hydrograph with constant pollutant concentration enters sinkhole number 60 (see 

Figure 3.4). Three progressively different time steps, ~t. are used, the total number of time 

steps, NDT, being 1500. This test simulates 3000 hours of prototype time. 

The discharge and pollutant flux hydrographs at Big Spring are presented in Figures 4.5 

and 4.6. Figure 4.5 shows that the outflow response varies greatly at Big Spring for 

megapore diameters less than 15 ft, but is much less sensitive for megapore diameters greater 

than 15 ft. This means that for the given input hydrograph of 80 cfs peak discharge, 

megapores with diameter less than 15 ft constrict the system. Megapores with diameter 

greater than 15 ft are capable of directly conveying the input hydrograph to the outflow. 

Therefore, the response at Big Spring depends on the input hydrographs rather than on the 

megapore diameter for megapore diameters greater than 15 ft. 

Pollutant flux responses at Big Spring, shown in Figure 4.6, indicate that for megapores 

with diameters greater than 15 ft, most of the pollutant that enters the system from 
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sinkhole 60 does not emerge at the spring during the simulation period. This is because the 

flow velocities inside the megapores are very slow. 
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Ranging from 4 ft to 25 ft 

To get a better understanding of the dynamics of pollutant transport for megapore 

diameters less than 15 ft, two additional tests were performed with megapore diameters of 



7 ft and 9 ft. The discharge and pollutant flux results of these tests are presented in 

Figures 4. 7 and 4.8, respectively. 
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Figure 4. 7. Discharge Hydrographs at Big Spring for Megapore Diameter, D, Ranging 
from 5 ft to 10 ft 
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For discharges, Figure 4. 7 basically leads to the same conclusion as that of Figure 4.5, 

namely, that the discharge responses vary at Big Spring for megapore diameters less than 
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15 ft. For pollutant fluxes, Figure 4.8 gives more information about the dynamics of 

pollutant transport than to Figure 4.6. Specifically, for megapore diameters less than 15 ft, 

Figure 4 .8 shows that pollutant flux responses at Big Spring vary greatly with diameter. The 

larger the diameter, the slower the flow velocities, thus giving more time for pollutants to 

disperse in the flow. The more dispersed the pollutant, the more the responses look like a 

Gaussian cloud. At the narrowest diameter tested (5 ft) the particular dynamic of the pollutant 

flux is due to different paths taken by the flow from sinkhole 60 to Big Spring (see 

Figure 3.4) . 

4.3 .5.2. Analysis of Sensitivity to Megapore Roughness 

In this analysis, the Strickler coefficient, k,, is chosen to represent megapore roughness. 

Chow (1959) presents typical values of the Manning coefficient, n (the reciprocal of the 

Strickler coefficient, k,), for various types of channels. From this study, the Strickler 

coefficient, k
1

, for a karst region is assumed to be in the range of 20 to 35. 

The analysis is done by varying the values of the Strickler coefficient, k,, while other 

parameters are held constant. In this analysis, hydraulic conductivity, K, is 7.6 x 10-s fps 

and the specific storage, S , is 1.33 x 1 o~ /ft. In order to see the effect of k, on flux 

responses at Big Spring, two diameters, 5 ft and 10 ft, are chosen based on the previous 

analysis in which these two diameters gave different responses. The steady-state initial and 

boundary conditions from Section 4 .3.4 are used in this analysis. An inflow hydrograph 

with constant pollutant concentration is entering sinkhole number 60 (see Figure 3.4). 

Figures 4.9 and 4.10 present flow and pollutant transport responses at Big Spring when 

the megapore diameter, D, is 5 ft. Both figures show that larger values of k. give larger water 

discharge and pollutant flux. These results confirm the characteristic of the Strickler 

coefficient; that is, since larger values of k, produce less flow resistance, the peak of the flow 

comes earlier than for smaller values. Despite, the complicated shape of the pollutant fluxes in 

Figure 4 .10, different values of k, only affect the peaks, not the overall shape of the curve. 
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Figure 4.9. Discharge Hydrographs at Big Spring for Various Values of Megapore 
Strickler Coefficient, k_, and Diameter, D = 5 ft. 
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Figure 4.10. Concentration Fluxes at Big Spring for Various Values of Megapore 
Strickler Coefficient, k,, and Diameter, D = 5 ft. 

The same analysis is also performed with a 10 ft megapore diameter. The results for 

flow discharges and pollutant transport are given in Figures 4.11 and 4.12, respectively. 

These results confirm the results obtained with a 5 ft megapore diameter. 
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Figure 4 .11 . Discharge Hydrographs at Big Spring for Various Values of Megapore 
Strickler Coefficient, k,, with Diameter, D = 2 ft. 
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Figure 4.12. Concentration Fluxes at Big Spring for Various Values of Megapore 
Strickler Coefficient, k,, with Diameter, D = 2 ft. 

4.3 .5.3. Analysis of Sensitivity to Aquifer-Matrix Hydraulic Conductivity 

The analysis is done by varying the hydraulic conductivity values of the aquifer-matrix 

while other parameters are held constant. In this analysis, the Strickler coefficient for the 

megapores, k,, is 30, and the megapore diameter, D, is 10 ft. The steady-state initial and 
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boundary conditions given in Section 4.3.4 are used in this analysis. An inflow hydrograph 

with constant pollutant concentration is entering sinkhole number 60 (see Figure 3.4). Three 

different time steps, ~t. are used to run the model, the total number of time steps, NDT, being 

1500. This test simulates 3000 hours of prototype time. 

Figures 4.13 and 4.14 show flow and pollutant flux responses, respectively. Recall 

from Section 4 .3.4 that different values of hydraulic conductivity, K, give different 

baseflows. Figure 4.13 shows that a lower value of hydraulic conductivity, K, gives a 

hydrograph with the same shape as the inflow, while a higher K gives a smoother retention 

curve. For the value of hydraulic conductivity, K = 7.6 x 10-6 fps, the aquifer-matrix can 

be thought of as "near solid"; that is, only the megapores deliver the flow from the sinkhole to 

the spring. For larger values of hydraulic conductivity, the aquifer-matrix contributes more to 

flow delivery, resulting in an outflow hydrograph that is different in shape than the inflow. 
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Figure 4 .13. Discharge Hydrographs at Big Spring for Various Values of Hydraulic 
Conductivity of the Aquifer-Matrix and Megapore Diameter, D = 10 ft 

For pollutant flux, the two values of hydraulic conductivity of the aquifer-matrix give 

quite different results. Figure 4.14 shows that for hydraulic conductivity, 

K = 7 . 6 x 10-6 fps, the pollutant does not emerge even after 3000 hrs, while for 



K = 7 . 6 x 1 o-s fps, the pollutant flux reaches the peak 400 hrs after entering the system. 

This difference is due to the difference of the baseflow. For hydraulic conductivity, 
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K = 7. 6 x 10-6 fps, the baseflow is about 3 cfs, while for K = 7 .6 x 1 o-s fps, the 

baseflow is about 25 cfs (see Figure 4.4.b). For the saturated case, most of the water, after 

entering sinkhole number 60, goes directly to Big Spring. For pollutant which is moving 

with the advective velocity of the water, the important part of the flow is that which gives that 

velocity; i.e., the baseflow, which is always available. In this case the inflow hydrograph acts 

to bring pollutant into the system, while the baseflow acts to transport the pollutant to Big 

Spring. 
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Figure 4.14. Concentration Fluxes at Big Spring for Various Values of Hydraulic 
Conductivity of the Aquifer-Matrix and Megapore Diameter, D = 10 ft 

4.3.5.4. Analysis of Sensitivity to the Megapore Taylor Dispersion Coefficient 

The analysis is done by varying the values of the Taylor dispersion constant, E, of the 

megapore, while other parameters are held constant. In this analysis, the Strickler coefficient 

of the megapore, k1 , is 30; the hydraulic conductivity of the aquifer-matrix, K, is 7 .6 x 10-s 

ft/s; and the megapore diameters, D, are 5 ft and 10 ft. These two values are chosen because 

they give quite different responses to pollutant flux at Big Spring (see Figure 4.8). The 
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steady-state initial and boundary conditions mentioned previously are used in this analysis. 

An inflow hydrograph with constant pollutant concentration is entering sinkhole number 60 

(see Figure 3.4). Three different time steps, 6t, are used to run the model, in which the total 

number of time steps, NOT, is 1500. This test simulates 3000 hours of prototype time. 

In this test, the Taylor dispersion coefficient,£, in Eq. (3.7) is computed by the Taylor 

formula (Fischer et al., 1979) 

(4.4) 

where Ct is the Taylor dispersion constant; a is radius of the megapore; and u• is the shear 

velocity which is equal to {¥ or Y gRS . In the latter expression, 't0 is the pipe wall shear 

stress, pis the mass density of water, g is the gravitational acceleration, R is the radius 

hydraulic of the megapore, and Sis the energy slope. According to Fischer et al. (1979), the 

Taylor dispersion constant Ct is 10.1 

The analysis is done by using 50% to 200% of the suggested value of the Taylor 

dispersion constant of the megapore; i.e., C1 ranges from 5.05 to 20.2. The results of all tests 

show that there are no significant differences in the pollutant transport response at Big Spring 

for different values of the Taylor dispersion constant, Ct. This is because the flow is 

dominated by the advective phenomenon rather than the diffusive one. Therefore, the Taylor 

dispersion constant, C1, does not significantly contribute to the behavior of pollutant transport. 

4.3.5.5. Analysis of Sensitivity to the Classes of Megapore Diameters 

From the previous sections, the sensitivity analysis shows that the model is sensitive to 

megapore diameters. Thus, it is of great interest to see how sensitive the model is to the 

classes of megapore diameters. The analysis uses different classes of megapore diameters, 

while other parameters are held constant. Megapore diameters are divided into four classes 

according to their elevation (see Figure 4.15). 
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Figure 4.15. Diameter Classes Based on the Elevation of the Megapore Network 

Class 1 consists of all megapores which exist between elevation 0 ft to 99 ft. Class 2 

consists of all megapores which exist between elevation 100 ft to 199 ft. Class 3 consists of 



all megapores which exist between elevation 200 ft to 299 ft. Class 4 consists of all 

megapores which exist between elevation 300 ft to 400 ft. 
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Four tests with different sets of the megapore diameter classes are performed, as shown 

in Table 4.2. 

Table 4.2. Four Sets of Classes of Megapore Diameters 

Name Class 1 Class 2 Class 3 Class 4 

Set 1 10.0 ft 7.5 ft 5.0 ft Sinkholes 

Set 2 5.0 ft 7.5 ft 10.0 ft Sinkholes 

Set 3 8.0 ft 8.0 ft 8.0 ft Sinkholes 

Set 4 7.0 ft 7.0 ft 7.0 ft Sinkholes 

Elevation (ft) 0-99 100-199 200-299 300-400 

Megapore diameters in Set 3 of Table 4.2 are 8 ft, which is the weighted average of the 

diameters used in Set 1, and megapore diameters in Set 4 are 7 ft, which is the weighted 

average of the diameters used in Set 2. In this analysis, the Strickler coefficient of the 

megapore, k., is 30 and the hydraulic conductivity of the aquifer-matrix, K, is 7.6 x 10-s ft/s. 

The same steady-state initial and boundary conditions used in the previous analyses are used 

in this analysis. An inflow hydrograph with constant pollutant concentration is entering 

sinkhole number 60 (see Figure 3.4). Three different time steps, i\t, are used to run the 

model, in which the total number of time steps, NDT, is 1500. This test simulates 

3000 hours of prototype time. 

Figures 4.16 and 4.17 present discharge and pollutant flux results, respectively, for 

Sets 1 and 3. Figure 4.16 shows that there are peak and shape differences in the discharge 

response at Big Spring depending on the megapore diameters close to Big Spring. For Set 1, 
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the megapore diameters close to Big Spring are 10 ft, while, for Set 3 the diameters are 8 ft. 

Comparison of the hydrographs of Set 1 from Figure 4.16 and those of D = 9 ft from 

Figure 4. 7 suggests that Set 1 may be approximated using a uniform diameter of 9 ft instead 

of 8 ft. 
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Figure 4.16. Discharge Hydrographs at Big Spring for Megapore Diameter Classes of 
Set 1 and Set 3. 
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Figure 4.17. Concentration Fluxes at Big Spring for Megapore Diameter Classes of Set 1 
and Set 3. 



These results also show that the pollutant transport is more velocity-dependent than is 

discharge. Pollutant transport is, therefore, more strongly influenced by the distribution of 

megapore diameter classes. 
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Figure 4.19. Concentration Fluxes at Big Spring for Megapore Diameter Classes of Set 2 
and Set 4. 

4.3.6. Water Quality Responses of the Big Spring Basin 

If the present model is to serve as the basis for a broader range of research, it must be 

shown to be able to simulate field conditions. To do this, the model was run to simulate two 

of the dye trace experiments conducted by Hallberg et al. (1983). The purpose of these 

experiments was to establish direct connections between sinkhole recharge points and 

discharging springs. In the Big Spring Basin, several dye trace experiments were conducted 

by the Iowa Conservation Commission (ICC) and Iowa Geological Survey (IGS). 

Figure 4.20 shows the sinkholes used as dye input points (Hallberg et al. 1983). 

4.3.6.1. Simulation of Dye Trace Experiments 

In the dye trace experiments, Fluorescein dye was placed at the sinkholes. At least one 

week prior to both traces, packets of activated coconut charcoal were placed at the collection 

points. This coconut charcoal was used to capture Fluorescein from the water. These were 
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replaced with fresh packets the day before each trace and tested for background levels of 

Fluorescein which, if present, could result in a false trace. Background levels at all collection 

points tested negative (Hallberg et al., 1983). In the present simulation, Big Spring is the 

only collection point considered. 
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Figure 4.20. Location of Sinkholes Used for Dye Trace Experiments, 
after Hallberg et al. (1983) 

T.95N. 

T.94N. 

The first dye trace experiment simulated here is the one conducted on the Bugenhagen 

farm (trace A, see Figure 4.20). The experiment began at 8:30 pm, when 2 pounds of 

Fluorescein dye were placed in a sinkhole on the farm. At that time, a stream flow of 

0.02--0.05 cfs was draining directly into the sinkhole. Charcoal packets were changed 
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periodically at Big Spring, with the first dye appearing between 39 and 51 hours after the 

input. Flow at Big Spring during this period varied from 62 to 65 cfs (Hallberg et al. 1983). 

To simulate dye trace A, it is first assumed that all sixteen sinkholes have the same inflow 

of 0.05 cfs, giving a total inflow of 0.8 cfs. This assumption is a very minor one, since total 

sinkhole inflow only constitutes 1.3% of the total discharge at Big Spring. The rest of the 

discharge is assumed to originate from the aquifer-matrix. This simulation is done by using 

the fixed megapore topology previously used in the sensitivity analysis, and by imposing 

discharge on the aquifer-matrix in the area surrounding the arbitrarily-chosen sinkholes 60, 

66, 94, and 118 so that the discharge at Big Spring is within the range of 62 to 65 cfs. The 

model is run for megapore diameters, D, ranging from 5 to 10 ft; two values of megapore 

roughness, k., 30 and 20; and two values of hydraulic conductivity, K , 7 .6 x 10-s fps and 

7 . 6 x 10-6 fps. At time t = 6 hrs, a pollutant concentration of 2000 units is imposed at 

sinkhole 60 so that a pollutant flux of 100 units enters the sinkhole. Sinkhole 60 is chosen to 

represent the sinkhole used in the actual dye trace A experiment since it is the nearest sinkhole 

in the computational network to the real one. 
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Figure 4 .21 . Results of Simulation of Dye Trace A for Several Megapore Diameters, D; 
Megapore Roughness, k, = 30; and Hydraulic Conductivity, 
K = 7. 6 x 1 o-s fps 
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Figure 4.21 presents the results of the simulation for megapore diameter, D, ranging 

from 5 to 10 ft; megapore roughness, k,, equal to 30; and hydraulic conductivity, K equal to 

7 .6 x 1 o-s fps. During the simulation, discharge at Big Spring is 63.8 cfs. Complete results 

are given in Table 4.3. 

Table 4.3. Results of Simulation of Dye Trace A 

Diameter (ft) Travel Time (hrs) 

K = 7.6 x 10-s fps K = 7.6 x 10-s fps K = 7.6 x lo-° fps 

k. = 30 k. = 20 k, = 30 

5 28 28 27 

6 36 36 34 

7 45 45 43 

8 55 55 53 

9 67 67 63 

10 79 79 75 

In Table 4.3, the travel times of the pollutant flux at Big Spring are taken to be the first 

positive pollutant flux encounters as shown in Figure 4.21. Figure 4.21 shows that due to 

numerical errors, negative pollutant flux precedes the first positive flux with the same order of 

magnitude. It should be realized that both the negative and positive pollutant fluxes are almost 

undetectable compared to the imposed pollutant influx of 100 units entering sinkhole 60. 

Figure 4.21 and Table 4 .3 show that, for all cases, a megapore diameter of 7 ft 

produces travel times that lie within the range of the real travel time of dye trace A; i.e., from 

39 to 51 hours. Table 4.3 also shows that variation of megapore diameter gives significantly 

different travel times. Specifically, there is a narrow variation of megapore diameter that 
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produces the correct travel time of dye trace A; i.e., about 1.25 ft or megapore diameters from 

6.25 to 7.5 ft (see Figure 4.22). Table 4.3 shows that variation of megapore roughness, k,, 

from 30 to 20 does not affect the travel time, while variation of hydraulic conductivity of the 

aquifer-matrix gives a difference of travel time ranging from 1to4 hours. 
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Figure 4 .22. Travel Time, in Hours, versus Megapore Diameter, in Feet, in the 
Simulation of Dye Trace A 
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The second dye trace experiment simulated here was conducted on the Baade sink 

(trace 1, see Figure 4.20). The experiment began at 9:00 pm, when 2 pounds of 

Fluorescein dye were placed in a sinkhole on the Baade sink. At that time, a stream flow of 

0.11 cfs was draining directly into the sinkhole, due to a heavy rain in the basin. Charcoal 

packets were replaced at 1(2 day intervals at Big Spring with the first dye appearing between 

44 and 50 hours after input. Flow at Big Spring during this period was approximately 56 cfs 

(Hallberg et al., 1983). 

To simulate dye trace 1, it is first assumed that all sixteen sinkholes have the same inflow 

of 0.11 cfs, giving a total inflow of 1.67 cfs. This is a minor assumption since the sinkhole 

inflow only constitutes 3.0% of the total discharge at Big Spring. The rest of the discharge is 



assumed to originate from the aquifer-matrix. This simulation is done using the fixed 

megapore topology as before, and imposing discharge on the aquifer-matrix in the area 

surrounding sinkholes 25, 60, 66, and 112 so that the discharge at Big Spring is about 
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56 cfs. As in the previous dye trace experiment, these four sinkholes are chosen arbitrarily. 

The model is run for megapore diameters, D, ranging from 5 to 10 ft; two values of megapore 

roughness, k,, 30 and 10; and two values of hydraulic conductivity, K, 7.6 x 10-s fps and 

7 . 6 x 1 o~ fps. At time t = 6 hrs, a pollutant concentration of 2000 units is imposed at 

sinkhole 112 giving a pollutant flux of 220 units entering the sinkhole. Sinkhole 112 is 

chosen to represent the sinkhole used in the actual dye trace 1 experiment since it is the 

nearest sinkhole in the computational network to the real one. 
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Figure 4.23 . Results of Simulation of Dye Trace 1 for Several Megapore Diameters, D; 
Megapore Roughness, k, = 30; and Hydraulic Conductivity, 
K = 7 .6 x 1 o-s fps 

Figure 4.23 presents the results of the simulation for megapore diameter, D, ranging 

from 5 to 10 ft; megapore roughness, k,, equal to 30; and hydraulic conductivity, K, equal to 

7. 6 x 1 o-s fps. During the simulation, discharge at Big Spring is 56.0 cfs. Complete results 

are given in Table 4.4. 
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Figure 4.23 and Table 4.4 show that, for all cases, a megapore diameter of 7 ft 

produces travel times that lie within the range of the real travel time of dye trace 1; i.e., from 

44 to 50 hours. Table 4.4 also shows that variation of megapore diameter gives significantly 

different travel times. Specifically, Table 4.4 shows that a narrow variation of megapore 

diameter produces the actual travel time of dye trace 1; i.e., about 0.6 ft or megapore 

diameters from 6.8 to 7.4 ft (see Figure 4.24). Table 4.4 shows that variation of megapore 

roughness, k.. from 30 to 10 does not affect the travel time, while variation of hydraulic 

conductivity of the aquifer-matrix gives a difference of travel time ranging from 4 to 7 hours. 

Table 4.4. Results of Simulation of Dye Trace 1 

Diameter (ft) 

5 

6 

7 

8 

9 

10 

K = 7.6 x 10-s fps 

k, = 30 

28 

36 

45 

55 

66 

79 

Travel Time (hrs) 

K = 7 .6 x 10-6 fps K = 7 .6 x 10-6 fps 

k. = 30 k, = 10 

24 25 

32 32 

40 40 

50 50 

60 60 

72 72 

In Table 4.4, the travel times of the pollutant flux at Big Spring are taken to be the first 

positive pollutant flux encounters as shown in Figure 4.23. Figure 4.23 shows that due to 

numerical errors, negative pollutant flux precedes the first positive flux with the same order of 

magnitude. It should be renlizcd thlll both the ncglltive and positive pollutruu fluxes rue almost 

undetectable compared to the imposed pollutant influx of 220 units entering sinkhole 112. 
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Moreover, the above results are based on following ranges of parameters: megapore diameter, 

D, from 3 ft to 30 ft; hydraulic conductivity, K, from 7.6 x 10~ fps to 7.6 x 10-s fps; 

megapore roughness, k., from 10 to 35; and Taylor dispersion coefficient, Ct, from 5.05 to 

20.2, values which are 50% to 200% of the suggested value of Ct (10.1). 

The results of sensitivity are summarized in the following paragraphs: 

(1) The size of the equivalent megapore dictates whether the overall system is responsive 

or diffusive. Generally, the smaller the diameter, the less responsive the system to a storm 

hydrograph entering sinkholes. Moreover, for a given megapore diameter, there is a threshold 

input hydrograph that the megapore can pass directly. 

(2) Megapore diameter classes are particularly important for pollutant transport while this 

feature does not significantly affect discharge response. The same discharge response at Big 

Spring may be obtained by replacing several megapore diameter classes by one uniform 

diameter, but it is difficult to get the same pollutant response using this procedure. 

(3) After megapore diameters and their classes, hydraulic conductivity of the aquifer

matrix is the third most important parameter. The importance of hydraulic conductivity is due 

to its contribution to the baseflow of the system. Generally, in any storm event, if there is 

pollutant in the water, the storm acts only as a carrier to bring the pollutant from outside into 

the system (i.e., aquifer-matrix and megapore network). Inside the system itself, the pollutant 

is usually carried by the baseflow, except for the case of small megapore diameters in which 

small amounts of the pollutant are also carried by the storm, resulting in a flashy downstream 

pollutant flux . 

( 4) Megapore roughness is a mildly important parameter. Generally, this parameter only 

slightly affects the peak discharge of water and pollutant, as well as the time to peak. The 

overall behavior of responses at Big Spring is not affected by this parameter. 

( 5) The dispersion coefficient also does not play an important role in the present study 

since the advective phenomenon is dominant compared to the diffusive one. Variation of the 

value of the dispersion coefficient, C1, from 50% to 200% of the suggested value does not 

give significant differences in pollutant transport at Big Spring. 

Figure 4.25 shows that discharge response at Big Spring for a 20 ft megapore diameter, 
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The simulation of the dye trace experiments, shows that travel times of the dye traces are 

very sensitive to megapore diameter, confirming that megapore diameter is the most important 

parameter affecting the system. The range in magnitude of diameter that produces the actual 

travel time is within 1.5 ft of the representative diameter. Even though the representative 

diameters chosen in the previous section are not necessarily the actual ones, the range of 

deviation from the representative diameter is an important finding. This narrow deviation 

shows that megapore diameter significantly affects pollutant transport. These results confirm 

the conclusion of the sensitivity analysis on megapore diameter. 

The simulation results show that the maximum outflow at Big Spring usually coincides 

with a point in the inflow hydrograph. It should be possible, therefore, to predict the flow at 

Big Spring using a reservoir-type formulation, which avoids the complexity of a detailed 

mathematical formulation that considers all the water pathways (megapore network). For 

pollutant transport, however, the pathways are important and the reservoir formulation is not 

adequate to determine the concentration of pollutants in the Big Spring flow. Thus, the 

discharge response at Big Spring can be written as: 

dO = I(t) - O(t) 
dt 

(4.4) 

where I(t) is known storm hydrographs entering sinkholes and O(t) is discharge response at 

Big Spring. When O(t) reaches maximum value, i.e., dg = 0, the discharge response at Big 

Spring is O(t = t1) = I(t = t1) . As the system becomes a diffusive one, i.e., the megapore 

diameters decrease, Eq. (4.4) will no longer apply, as shown in Figure 4.9. 



CHAPTER V 

CONCLUSIONS AND FURTHER RESEARCH 

5.1. Conclusions 
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This section summarizes all results obtained from the present study. First, from 

sensitivity analysis, important parameters and features of the karst region have been identified. 

The most important parameter is the equivalent megapore diameter, and its distribution 

throughout the megapore network is the most important feature of the megapores. Other 

parameters affecting the Big Spring Basin ranked in order of importance are hydraulic 

conductivity of the aquifer-matrix, megapore roughness and dispersion coefficient. The 

megapore dispersion coefficient does not affect the basin, since the pollutant transport is 

dominated by advection rather than dispersion phenomenon. 

Second, the main objective of the present study has been achieved by the computer code 

Labyrinth. The Labyrinth code is capable of simulating the behavior of saturated groundwater 

flow and pollutant transport in karst regions. The two modes of the flow ; fast-response flow 

in cave passages and slow-response flow in the aquifer-matrix , have been correctly 

reproduced by the Labyrinth code. 

Third, the results of the dye trace simulation, viewed in a Monte Carlo simulation 

framework, succeed in producing realizations for dye trace A and 1 experiments. Thus, the 

Labyrinth code has shown the capability to serve as a "deterministic engine;" suggestions for 

extension of the code into a complete "deterministic engine" in a Monte Carlo simulation are 

explained in the following sections. 



5.2. Further Research 

This section suggests how the present model could be made more reliable and how it 

could be extended to more general cases. The suggestions range from simple to complex 

according to the time needed to extend the capability of the Labyrinth code to handle each 

proposal. These times, however, are only approximate since field data availability and 

requirements greatly influence the priority of further research. 

5.2.1. Field Experiment to Test the Labyrinth code 
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Field data show that peak discharges at Big Spring typically occur in February or March, 

sometimes extending to May, during which time the aquifer is still in a near-saturated 

condition. Thus, the present study, which deals only with saturated cases, may be used to 

simulate the Big Spring Basin response to a storm in that period. 

First, to model the response of the Big Spring Basin due to a storm inflow hydrograph 

entering sinkholes, the rainfall over the basin, discharge entering sinkholes, and outflow from 

the basin, all for the same period, are needed. 

Second, to model the pollutant transport in the basin, the size and distribution of 

megapore diameters are needed. From the sensitivity analysis and dye trace simulation, the 

results show that the pollutant transport is greatly influenced by the megapore diameters and 

their distribution. Therefore, one may exploit dye trace experiments to predict the megapore 

diameters and their distribution. For example, variable dye trace tests may be carried out in 

which variable concentration dye is inputted into a sinkhole over a period of time and the 

response at Big Spring is recorded. Other dye trace experiments (Hallberg et. al., 1984) 

might be used to gain more insights into the behavior of pollutant transport at Big Spring 

because these experiments were conducted when outflow at Big Spring fluctuated. 

Since the baseflow also plays an important role in transporting the pollutant, 

identification of the flow that contributes to the baseflow in the Big Spring Basin is crucial. 

For example, Hallberg et al. (1983) points out that Roberts Creek (see Figure 4.20) lost 

0.3 cfs over a 6 mile reach during winter low-flow periods. Farther downstream, the same 
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creek lost even more flow into a sinkhole, and standing water in adjacent sinkholes was about 

6 ft below the level of the creek. This phenomenon is important to the Labyrinth code since it 

can serve as a boundary condition of the imposed-head type, giving a major contribution for 

the baseflow to the model. Other observations suggest that, at other times in the past, nearly 

the entire flow of Roberts Creek has been swallowed by sinkholes in the losing reach. 

Although at the present time, all sinkholes along Roberts Creek have been plugged, either by 

man or natural activity, in the future this phenomenon may occur again. Therefore, field 

identification of such phenomena is necessary to improve the reliability of the Labyrinth code. 

5.2.2. Development of the Labyrinth code to Handle Unsaturated Cases 

Extending the Labyrinth code to handle unsaturated cases is challenging because of the 

complexity of flow in unsaturated karst regions. Complexities arise in the megapore network 

and aquifer-matrix computation, as discussed in the following paragraphs. 

In the megapore network, the difficulties are not due solely to the partially full megapore 

flow, but from the fact that in karst regions many of the megapores are vertically oriented; 

i.e., sinkholes or vertical shafts. The present code might be extended without difficulties to 

handle a partially full flow as long as the megapore is almost horizontal since, in this case, the 

governing equation (3.5) can still be used (open-channel flow). For vertically oriented 

megapores, however, the governing equation (3.5) is not applicable, because one of its 

assumptions, that there is no vertical acceleration in the flow, is violated. Thus, the solution 

of this problem is needed before extending the Labyrinth code to handle unsaturated cases. 

Moreover, in order to conform with other megapore solutions, and thus to avoid major 

revision in the present code, the solution must be cast in the form appropriate for the double

sweep technique explained in Chapter ill. 

In the aquifer-matrix, complexities arise due to the dependency of soil parameters, such 

as the hydraulic conductivity, K, the specific storage, S, in Eq. (3.1), and the bulk dispersion 

coefficient, D, in Eq. (3.3), on the water content of the aquifer. The mathematical 

formulation of the flow in an unsaturated aquifer-matrix or porous media may be expressed as 



the Richards equation. For the case of three-dimensional flow with the Cartesian 

computational coordinates aligned with the principal direction of anisotropy, the Richards 

equation becomes 
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(5.1 ) 

where 'Vindicates the capillary pressure head, z is the vertical coordinate, and S('V) is the 

specific storage. In this equation, 'V depends on the water content of the aquifer-matrix or 

porous media. 

As with the solution of problems in the saturated zone, the solution of Eq. (5 .1) requires 

the specification of initial and boundary conditions. However, unlike the case of saturated 

flow, the statement of water content distribution alone is not sufficient because '1'(0w), where 

ew is the water (or moisture) content, is subject to hysteresis. It is also necessary to state 

whether a drying or a wetting process is taking place along the boundary. Assuming that 

'V(0 w) is known, if the flow reverses its direction during the period of study, hysteresis must 

be taken into account. 

For pollutant transport in the aquifer-matrix, the governing equation (3.3) can be used as 

long as the value of the bulk dispersion coefficient of the aquifer-matrix, D, is obtained by 

taking the water content of the aquifer into consideration. The initial and boundary conditions 

for unsaturated cases are basically the same as those used in saturated cases. 

5.2.3. Development of the Labyrinth Code to Include Stochastic Processes 

The output of a numerical model of flow and/or pollutant transport in a groundwater 

system will normally contain errors of unknown magnitude. These errors arise from several 

sources: 

1 . the extent to which actual physical and chemical processes are represented in the 

model; 

2 . numerical methods used to solve differential equations; 
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3. errors in the values of system parameters (aquifer properties; system geometry; initial 

and boundary conditions). 

Thus, there is always a degree of uncertainty involved in modeling a groundwater system, and 

it would be desirable to be able to estimate this uncertainty. In the following paragraphs, the 

possible extension of the present study to incorporate uncertainty analysis is outlined. 

The governing flow and transport equations used in the present model are partial 

differential equations (PDEs) relating a variable (e.g., the piezometric head or the 

concentration) at a point in space and time to the parameters of the aquifer. Classically, both 

the variables and the parameters are considered deterministically. That is, each parameter is 

defined by a unique value at each location and time, even though this value may vary with 

space and/or time. It is possible, however, to consider partial differential equations relating 

stochastic variables to stochastic parameters; these are simply called stochastic PDEs. 

Spectral, perturbation, and Monte Carlo methods are used for solving such equations. 

The spectral method has been used extensively. This method is well suited to infinite 

media and analytical models. In this method, both the variable and the parameter are defined 

as a mean plus a fluctuation around the mean. Introducing this definition into the stochastic 

PDE, and taking the expected value of the equation, results in two new equations, one for the 

mean and one for the fluctuation. The first, an ordinary deterministic PDE, which can be 

solved analytically, provides the mean of the variable as a function of the mean of the 

parameter. The second equation, relating to the fluctuation, is transformed in the spectral 

domain by Fourier-Stieljes integrals, and the spectrum of the variable is obtained as a function 

of the spectrum of the parameter. The spectrum, or spectral density, is the Fourier transform 

of the covariance function. By an inverse Fourier transform, it is then possible to calculate 

analytically the covariance function of the variable (Peck et al., 1988). 

The perturbation method can be used with analytical and numerical models and in 

conjunction with spectral methods. In this method, the uncertainty in parameters must be 
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small. Thus, the fluctuation around the mean can be developed in a Taylor series, neglecting 

second order terms. As in the spectral method, the variable and the parameter are defined as a 

mean and a fluctuation, but the fluctuations of both the variable and the parameter are 

multiplied by a small factor ~· This is introduced in the PDE, which is then developed in 

terms of zero and first order expressions of~. neglecting higher order terms. The zero-order 

term is a deterministic equation for the mean. By taldng the expected value of the first order 

term, it is possible to obtain an expression for the covariance of the variable as a function of 

that of the parameter (Peck et al., 1988). 

The Monte Carlo simulation method is certainly the most powerful yet the easiest to 

understand. Unlike the two previous methods, which are better suited to studying uncertainty 

associated with a single class of parameters, this method can be applied when many classes of 

parameters are simultaneously uncertain. For this reason, it is proposed that Monte Carlo 

simulation be used to analyze uncertainty in the present study, or stated more appropriately, 

that the Labyrinth code be embedded in a Monte Carlo simulation, as depicted in Figure 5 .1. 

A Monte Carlo simulation is described in the following paragraphs. 

5.2.3.1. Monte Carlo Simulation 

The Monte Carlo simulation works as follows. Given that N parameters in the present 

model are uncertain, e.g., megapore diameters and their distribution, topology of megapore 

network, megapore roughness, hydraulic conductivity of the aquifer-matrix, and initial and 

boundary conditions, one assumes that the probability density functions (PDFs) of their 

uncertainty are known. Using a random number generator, one then selects a value for each 

of these N parameters. Depending on the information available, the values taken by these N 

parameters can be considered as independent or correlated. With these sets of parameters, the 

Labyrinth code is run and a set of results is obtained. Another random selection of parameters 

is made and the model is run again, and so on, a very large number of times (e.g., 100, 1000 

or 10000 times), thus producing a large number of model results. One then calculates the 

mean, variance, covariance, or PDF of the model results for each point of interest, or for any 

desired function of results (see Figure 5 .1 ). The method is expensive in terms of computer 
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time, but it is easy to implement since any existing numerical mcxtel can be used in a Monte 

Carlo simulation mcxte. The method requires a subroutine to sample parameter values 

independently, or jointly in their respective PDF, including, when relevant, their internal 

correlation. 

Probabilistic 
Characterization of : 

Megapore Geometry 
Flow Parameters 
Surface Irrigation Input 
Initial & Boundary Conditions 

Stochastic Simulation of 
Input, Initial & Boundary Conditions 

Stochastic Simulation of 
a Karst Aquifer System that 
Resembles the Actual One 

................. 
Deterministic Simulation 

~ >- of a Particular Event 
~ Q for One Possible Structure 
Cl'J ;;:J 
~ Eo-c 
c:.:: Cl'J 
~ 

······-· 
Storage of Simulator Results 

Statistical Analysis 
of Results 

Probalistic Predictions 
of Future Groundwater 

Pollution Levels 
_____________________ J 

Figure 5.1. Monte Carlo Simulation Diagram for the Big Spring Basin 
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5.2.3.2. Limitations of Monte Carlo Simulations 

Monte Carlo simulations are probably the best available tool for evaluating uncertainty in 

model predictions. Limitations of this method, however, need to be emphasized. 

( 1) Size of sample. With a limited number of runs (e.g., 100), it may be possible to 

obtain a reasonable estimation of the first moment of the results (mean). Note that in 

problems involving nonlinearities, the mean of the model results will not be equal to the 

results obtained by running the model once with the mean of the parameter. To obtain a 

reasonable estimate of the second moment of the model results (variance, covariance, etc.), a 

much larger number of Monte Carlo simulation runs is required (e.g., 1000 or more). The 

number of runs depends on the variability of the parameters, their number, the sensitivity of 

the system, etc., so that no general rule can be applied. Finally, to estimate the PDF of the 

model results, an even larger number of runs must be performed. For instance, the study of 

uncertainty of model results is aimed at estimating the probability that a given situation is 

reached (e.g., the pollutant concentration at Big Spring is larger than a specified maximum 

value). However, the smaller the probability, the larger the number of runs required. Note 

that it is always possible to estimate an uncertainty band around the estimated PDF of the 

results, given a finite number of runs. 

(2) Existence of a solution and convergence of the Monte Carlo solution. To use the 

Monte Carlo method, it is assumed that the variability or uncertainty of the parameters can be 

described by stationary random functions, in which case one can define a mean, variance and 

covariance which must be estimated from the measurements. Generally, in analyzing the 

results, the implicit assumption is that the Monte Carlo results are stationary and thus the 

mean, variance and covariance can be computed. 

Suppose now that the results are not stationary, but intrinsic. In this case, covariance is 

replaced by the variogram, and the variance can no longer be defined. For a given number of 
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runs, it is always possible to calculate a mean, variance and covariance. If, however, these 

quantities do not exist for the infinite sample, they are only a function of the number of runs 

performed and cannot tell us anything about the real system. Unfortunately, for a given 

problem, there is no practical method to determine a priori if the solution will be stationary or 

not; even analytically this is a problem. Peck et al. (1988) suggests the following steps to deal 

with these difficulties. 

(a) The first step is to make sure that the same type of problem has already been 

addressed; e.g., by analytical methods, and that a stationary solution has been 

found. Then one may assume that for another geometry, another value of the 

parameters, etc., the results are also stationary. 

(b) The second step is to calculate the mean, variance and covariance of the results as a 

function of the number of runs; if these values fluctuate but reach an asymptotic 

value, one can, with some degree of confidence, assume that they are stationary. If 

not, then the problem is not stationary, and other assumptions; e.g., intrinsic, can be 

tested. 

( 3) Averaging scale. When Monte Carlo simulations are used to study the uncertainty of 

parameters of a numerical model, the statistical properties of the parameters are those of the 

averaged values of the parameter over each element or block of the model. In the stationary 

case, the mean is unchanged, but the variance and covariance are changed by spatial 

averaging. 

5.2.3.3. Generation of Megapore Topology 

Even though the present study uses a fixed topology for the megapore network, there is 

no doubt that megapore topology is very important. As shown in Figure 5 .1 , generation of 

megapore topology is required to performed a Monte Carlo simulation. 

In recent years, reseachers have modeled fractured networks using statistical methods. 

Specifically the works of Feuga (1988) and Witherspoon et al. ( 1988) offer insight into 

generating megapore topology for the present study. Feuga (1988) used the "regionalized 
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density Poissonian process" to generate fracture fields that are statistically and geostatistically 

similar to the real fracture field at the Fanay-Augeres mine in France. Feuga (1988) and 

Witherspoon et al. (1988) generated a three-dimensional channel network in fractures. This 

three-dimensional channel network is particularly fit to the present study with the added 

requirement that the network must be constrained to pass as many aquifer-matrix grid points 

as possible, as explained in Chapter m. 

5.3. Concluding Remarks 

As a part of a larger research objective - to serve as the deterministic engine of a Monte 

Carlo simulation of water resources in a karst region - the Labyrinth code has a promising 

future. At present, however, due to limited availability of data and time, the Labyrinth code 

can only produce the qualitative behavior of saturated groundwater flow and pollutant 

transport. If more field data and resources become available in the future, more thorough tests 

can be performed on the Labyrinth code to completely understand its behavior and to calibrate 

parameters, thus enabling the present code to predict future conditions of the Big Spring Basin 

during wet seasons. Moreover, the extension of the Labyrinth code to handle unsaturated 

cases and its inclusion in a Monte Carlo simulation will make the code a powerful tool to 

analyze water resources in karst regions. 



APPENDIX A 

DETAILED DERN A TION OF EQUATIONS 
USED IN CHAPTER ill MODEL DEVELOPMENT 

This appendix presents detailed derivations of equations mentioned in Chapter ill. 
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Equations that start with the number "3" are defined in Chapter ill; equations starting with the 

letter "A" are defined in this appendix. 

A.1. Derivation of Eq. (3.18) 

To accommodate three fractional steps Eq. (3.17) is split into three fractions as follows: 

•First fraction: x-direction 

will be approximated as 

(A.1) 

•Second fraction: y-direction 

will be approximated as 
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(A.2) 

•Third fraction: z-direction 

will be approximated as 

In the above derivations, the boldfaced variables are the approximations of the original ones. 

Thus, Eqs. (A.1 ), (A.2), and (A.3) can be generalized as follows: 

A.2. Derivation of Eq. (3.19) 

Eq . (3.18) is discretized using the Crank-Nicholson scheme (C-N scheme). Using the 

finite-difference grid depicted in Figure A.1, the first derivative is defined as 

(A.4) 

or 

(A.5) 



The second derivative is defined as 

where 

~i_( Ax Kx ah ),,,, 6 x (IV-12a)-(IV-12b) 
ax dx 0.5 (~1 + ~2) 

""A hi-1 - (A+B) hi+ B hi+l 

A-~ Ai CKi-1+KJ 
6x1 (~1+6x2) 

= 0.5 A1 CKi-1 +Ku 
6x1 

i-1 

.. 

and 

i 

B =~ ArCKi +Ki+V 
6x2 (~1+6x2) 

~ 

•• 

= 0.5 ~(Ki+ Ki+V 
6x2 

~ 

~ 

1+1 .. 
. ... 

Figure A.1 . Finite-Difference Grid 

By denoting the right-hand side of Eq. (A.6) as 8~ hi, the C-N scheme is written as 

Therefore, using the C-N scheme, and using n, n+l to denote t, t+l/3, respectively, 

Eq. (3.18) can be rewritten as 

(1--0) {A h'i'-1 - (A+B) hi+ B hi+d + 

0 {A hi_j1 - (A+B) ht1 + B hi:l} -

l wP - e aw (hn+1_ h~ )-.e._ aw (h -hP ) = Su (h~+1_ h~) 
3 dhi I I 3 dhm m m M I I 
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(A.6) 

(A.7) 

(A.8) 

(3.19) 



A.3. The Members of Eq. (3.21) 

Eq. (3.20) can be written in matrix form as 

[M]{h} = {F} 
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(3.21) 

where [M] is a tridiagonal matrix whose N-2 elements consist of the following contributions 

from the left hand side of Eq. (3.20): 

Subdiagonal elements : Ai= - 0A 

aw s · R = 0 (A + B + - ) + ...Jl 
• I ahi & 

Diagonal elements 

Superdiagonal elements : Ci = - 0B 

(A.9) 

(A.10) 

(A.11) 

{ F} is an N- 2 element vector of known quantities from the right hand side of Eq. (3 .20) as 

described below: 

Elements of {F} : Di = (1-0) {A hj_1 -(A+ B) hi+ B hi+1 -

1 wP e aw h" e aw (h hP ) su h" 3 + ahi i - 3 ahm m - m + ~ i 

{ h } is an N- 2 element vector of unknown piezometric heads. 

A.4. Discretization of the Governing Equation 
on the Boundaries 

(A.12) 

The discretization of the governing equation on the boundary needs special treatment, 

since the discretization used in the middle nodes can no longer be used. To solve this 

problem, it is assumed that, in the neighborhood of a boundary point, Taylor-series expansion 

is still applicable. 



The Taylor's series expansion for h2 around h1 at any time level can be written as 

follows: 

1 2 

Ignoring the third-order and higher terms and rearranging the above equation, 

In order to understand the physical meaning of the above Taylor-series, one may recast 

Eq. (A.13) in the following form: 
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(A.13) 

(A.14) 

Substitution of the boundary condition (3.22) - ~: = ~~ht - ~~ into Eq. (A.13) yields 

(A.15) 

Using the C-N scheme, one may rewrite Eq. (A.15) as it appears in Eq. (3.25). Then 

collecting the terms of the first element of Eq. (3 .21) gives the following expressions: 

Subdiagonal element 

Diagonal element 

Superdiagonal element 

A1 = 0 => not defined for the first point. 

B1=fuL+0 aw -0 2t>Kx (Ct iU-1) 
M dhs L\x2 C2 

C1=-0 2t>Kx 
L\x2 

(A.16) 

(A.17) 
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Elements of {F} 

(A.18) 

The Taylor-series expansion for hN around hN-• at any time level is 

hN-1 =hN- - LU+ - - -[ah] [a2h] .ruc2 
ax N ax2 N 2 N-1 N 

Note that the sign of~: on the boundary is consistent with the sign convention as 

depicted in Figure A.2 . On the first node, positive ~: means the flow is leaving the domain, 

while on the last node, negative ~: means the flow is entering the domain. 

1 2 

E_ > O , leaving the domain 
x 

h . th d . - > O , entenng e omam 

x / 

N-1 N 

Figure A.2. The Sign of ~: on the Boundaries 

The sign convention is used consistently for the entire domain; i.e., a positive sign 

indicates that flows are leaving the domain and a negative sign indicates otherwise. In order 

to maintain this convention for the last node, the sign of C2 in Eq. (3 .22) must be changed. 

For i = N, the boundary condition thus becomes 
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ah 
C1 h -C2 ax= C1 ( x,y,z,t) 

and one may write 

(A.19) 

Using the C-N scheme, Eq. (A.19) may be rewritten as it appears in Eq. (3.27). Then 

collecting the terms of the last element of Eq. (3.21) gives the following expressions: 

Subdiagonal element 

Diagonal element 

Superdiagonal element 

Elements of {F} 

: AN = _ O 2uKx 
~x2 

: BN = Su + O aw _ O 2uKx (C 1 ~ _ l) 
61 ahs ~2 C2 

: CN = 0 ==> not defined for the last point. 

: ~ =(1-0) 2uKx { hN--1 + (C1 ~ -1) hN- - c~ ~x} -
~x2 C2 C2 

0 2uKx C~+l _ l wP - ft_ aw (h - hP ) + 
~ C2 3 3 ahm m m 

0 aw hn Su hn 
ahs N +~ N 

A.5. Derivation of Eq. (3.29) for Middle Nodes 

(A.20) 

(A.21) 

(A.22) 

The derivation of Eq. (3.29) starts with the explanation of how the first and second 

derivatives are discretized. The finite-difference grid used in the derivation is presented in 

Figure A. l. The first derivative is defined as 

(A.23) 

or 

(A.24) 



The second derivative is defined as 

where 

L\x i_ {Ax Dx de ) "" (V -4a) - (V -4b) L\x 
ax dx 0.5 (Ax1 + L\x2) 

A= L\x A1 (Di.1 +DJ 
Ax1 (Ax1+~2) 

= 0.5 A1 (Di-1 +Di) 
L\x1 

and 

B = L\x Ar (Di+ Di+l) 
L\x2 (Ax1 + L\x2) 

0.5 Ar (Di+ Di+l) =------
Ax2 
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(A.25) 

(A.26) 

By denoting the right hand side of Eq. (A.25) as o~Ci, the Crank-Nicholson scheme of 

the first term of the left hand side of Eq. (3.28) can be written as 

(A.27) 

In the same fashion, the second term of the same equation can be written as 

L\x d(AxUxC) ""~ 0.5 (Ci+l Ui+l + CiUi) Ar - 0.5 (CiUi + Ci-1 Ui-1) A1 
ax 0.5 (Ax1 + Ax2) 

"" 0.5 {Ar Ci+l Ui+l +(Ar - A1) CiUi - A1 Ci-1 Ui-1) 

Its C-N scheme then becomes 

A d(AxUxC) ""El..(A c;i+lu~+l+(A -A)C~+lu~+l_A c;i+lu~+l) + 
x ax 2 r I+ 1 I+ 1 r l 1 1 I 1- l 1- l 

(l~S) (Ar Ci+1 Ui+1 + (Ar-A1) CiUi- A1 Ci-1 Uf_1) 

(A.28) 

and the first term becomes 

(A.29) 
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Substitution of Eqs. (A.27)-{A.29) into Eq. (3.28) yields Eq. (3.29) 

9 {AC i:t+l - (A+B) C i:t+l +BC i:i+l} + 
1-1 1 t+l 

(1-e){ACi_1-(A+B)Ci'+BCi'+d -

~(A c i:i+1u !t+l +(A -A) c !t+1u !t+l - A c i:i+tu !1+1) -2 r i+ 1 i+ 1 r l 1 1 l 1-1 1-l 

C n+iwi:i+t cnwn u (C !!+t_C!') e S 1 _ (1-e) S i _ I I 

3 3 - 81: 
for i = 2, .... , N-1 (3.29) 

A.6. Elaboration of Source Terms in Eq. (3.29) 

In Eq. (3.29), the source terms Cs and wi depend on their origin, either from the aquifer

matrix itself or from megapores. The following paragraphs elaborate the discretization of all 

possibilities for the source terms. 

A.6.1. Source Term w from the Aquifer-Matrix (Positive w) 

For a positive source term, Eq. (3.29) can be written as 

9{Aci:t+1 - (A+B)ci:i+1 +Bci:i+l} + 
1- 1 1 t+l 

a(A ci:i+1u!t+1 +(A - A)c!t+1u!t+1 -A ci:i+1u!t+1)-2 r i+ 1 t+ 1 r I 1 1 I 1-1 1- l 

(l-:) (Ar C i+1 U i+1 +(Ar - A1) C iU i - A1 C i-1 U f_1) -

e C i+1 W i+1 - (l-e) Ci W i _ u (C i+1 -Ci) 
3ei 3ei - 81: 

where Ci= aquifer-matrix solute concentration at any grid point. 



This is rearranged to get 

0{A + 0.5 A1 ur_i1 ) C f_i1 
-

~+1 
{0(A+B) + 0 3~i + ~ + 0.5 (Ar-Av U j+1) C j+1 + 

0{B -0.5 Ac Ui:l) C i:l = 
- (1-0){A C f-1-(A+B) Ci+ BC 'i+1l + 

(l-:) (ArC 'i+1 U r+1 + (Ar-Ai)C i U f-A1 C 'i-1 Uf_J + 

(1-0) w i c i - \) c i 
3ei & 

for i = 2, ... ., N-1 

A.6.2. Source Term w from Megapores (Negative w) 

For a negative source term, Eq. (3.29) can be written as 

0 {AC j_j1 - (A+B) C j+1 +BC i:l} + 

(1-0) {AC j_1 -(A+B) C j +BC 'i+il -

~(A C i:i+l U ~+l +(A -A) C ~+l U ~+l -A C i:i+l U 1:1+1) -2 r t+ 1 t+ 1 r l 1 1 I 1- l 1- l 

(l;S) (Ar C 'i+1 U i+1 +(Ar-Al/Ci U i - A1 C 'i-1 U t-1) -

C W n+ 1 C n W n (C n+ 1 C ") e m i - (1-0) m i = \) i - i 
3 3 & 
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(A.30) 

where C~ is pipe-network solute concentration at a previous time step, and Cm is the latest 

estimate of pipe-network solute concentration. 

This is rearranged to get 

0{A + 0.5 A1 Uf_i 1 } C f_i1 -

{0(A+B)+ ~ +0.5 (Ar-Ai)Uj+1} Cj+1+ 

0{B-0.5ArUr:l} Ci:l = 
- (1- 0){A C f-1 - (A+B) Ci+ BC i+1l + 

(1-:) (ArC i+1 Uf+1 + (Ar-Ai)C i U f - A1 C i-1 Uj_J + 

C W n+l C 0 W° C 0 

e m3 i +(1-0) m3 i_u&i 

for i = 2, .... , N-1 (A.31) 
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Eqs. (A.30) and (A.31) can be written in matrix fonn as 

[M]{C} = {F} (3 .29) 

where [M] is a nidiagonal matrix whose N-2 elements comprise connibutions from the left 

hand side of Eqs. (A.30) and (A.31) as described below: 

Subdiagonal elements 

Diagonal elements 

or (for positive W) 

Superdiagonal elements: 

Pi= 9(A + 0.5 A1 Uj1_j1} 

Qi=-( 9(A+B) + ~ + 0.5 (Ar - A1) l.Ji+1} 

~+1 
Ch= -( 9(A+B) + 9 3~i + ~ + 0.5 (Ar -A1) Uf+1} 

Ri = 9 ( B - 0.5 Ar T.Ji:l } 

(A.32) 

(A.33) 

(A.34) 

(A.35) 

{ F} is an N- 2 element vector of known quantities from the right hand side of Eqs. (A.30) 

and (A.31) as described below: 

Elements of {F} 

or (for positive W) 

Si = - (l- 9){A ci~1-(A+B) ct+ B ci~ il + 

(l;S) (Ar Ci+1 Uf+1 +(Ar -A1) CiUi - A1 Ci-1 Ui-1) + 

9 wr+; Cm + (1~) Wi3C~ - u~i (A.36) 

Si= - (l- 9){A ci~1-(A+B) ct+ B ci~il + 

(1;9) (Ar Ci+1 Ui+1 +(Ar - A1) CiUj - A1 Ci-1 Uf_1) + 

~C" uC~ 
(1 ~) I i - _ 1 (A.37) 

3ei .& 

{ C} is an N- 2 element vector of unknown solute concentrations. 

A.7. Elaboration of Source Tenns in Eq. (3.32) 

This section elaborates source tenns, c . and w;, in the boundaries as described in 

Eq . (3.32). For clarity, the equation is repeated here. 
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e 2Dx { crl + ( Ei ~ - l) q+t _ E~+l ~x} + 
~2 E2 E2 

(l--0) 2Dx {Ci + ( Ei ~ _ l) Ci_ E~ ~ } _ 
~2 E2 E2 

un+l cn+l un+l cn+l U" C" tr: C" 
0 2 2 - 1 1 - (1--0) 2 2 - 1 1 -

~ ~ 

(3.32) 

Cn+l wn+l C" n c n+l C" 
0 s 1 -(1--0) s W1 = 1 - 1 

3 3 & 

In Eq. (3 .32), the source terms, C, and w;, depend on their origin, either from the 

aquifer-matrix itself or from megapores. The following paragraphs elaborate the discretization 

of all possibilities for the source terms on the boundaries. 

A .7.1 . Source Term w from the Aquifer-Matrix (Positive w) 
at the Beginning of a Reach 

For a positive source term, Eq. (3 .32) can be written as 

and rearranged to get 

n+l 
- e~ - l }ci+1 + 

3e1 & 

e (2Dx _ Ui+l) C2+1 = 
~2 ~ 

- (1- 0)2Dx { C2" +(E1 ~x-l)Ct"- E~ ~x} + 
~x2 E2 E2 

(A.38) 



A.7.2. Source Term w from Megapores (Negative w) 
at the Beginning of a Reach 

For a negative source term, Eq. (3 .32) can be written as 

9 2Dx { q+t + (Et 6x -1) Ctl - E~+l 6x} + 
6x2 E1 E1 

(l-0)2Dx { e 2 +(Et 6x-l)Cl- E~ 6x }-
6x2 E1 E1 

un+l en+l un+l en+l un en ~en 
9 2 2 - 1 1 - (1-0) 2 2 - 1 1 -

6x 6x 

e W n+ 1 e n e n+ 1 en 
9 m 1 -(1-0) m W1 = 1 - 1 

3 3 M 
and rearranged to get 

{ 9 2Dx (E1 6x - 1) + 9 tr;+l - _l_ }crt1 + 
6x2 E1 6x M 

a(2Dx - U2+1) e1+1 = 
6x2 6x 

-(1-9) 2Dx {e2 +(E16x-l)e2- E~ 6x}+ 
6x2 E1 E1 

(l-0) U2 e2~ Ul Ci + 

9 2Dx E~+l 9 Cmwy+t + (l-B)C:bwY _Ci 
6x E1 + 3 3 M 

Collecting terms from Eqs. (A.38) and (A.39) for the first element of (3 .29) yields: 

Subdiagonal element 

Diagonal element 

or (for positive W) 

Superdiagonal element 

Elements of { F} 

: P 1 = 0 => not defined for the first point 

: Qi= u{ 9 2Dx (E1 6x -1) + 9 U1f1 - _l_} 
6x2 E1 6x M 

Qi= u{ 9 2Dx (E1 6x -1) + 9 U1f
1 

- l }- 9 Wi
1 

6x2 E1 6x M 3e1 

: Ri = 9u (2Dx - u2+1) 
6x2 6x 

: S1 = - (1-9) 2uDx { C2 + (E1 6x -1) Ci - E~ 6x} + 
6x2 E1 E1 

(l-O)u U2C2~ LJiC'l +au 2Dx E~+I + 
6x E1 
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(A.39) 

(A.40) 

(A.41) 

(A.42) 

(A.43) 
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(A.44) 

or (for positive W) 

(A.45) 

The same technique can also be applied to elaborate the discretized equations at the last 

computational point, as explained in the following paragraphs. Eq. (3.33) from Chapter ill 

is repeated below for clarity. 

9 2Dx { CN~f + ( E1 .1x - 1) cN+l - E~+l .1x } + 
.1x2 E2 E2 

(1-9) 2Dx { CN-l -( E1 ~ -1) q~ _ E~ ~} _ 
~2 E2 E2 

Un+l cn+l un+l cn+l U" C" U" C" 9 N N - N-1 N-1 -(1-B) N N- N-1 N-1 _ 
~ ~ 

(3.33) 

Cn+l wn+l C n n C n+l C" 
9 s N _ (1-B) s WN = N - N 

3 3 M 

In Eq. (3.33), the source terms, c. and wN, depend on their origin, either from the 

aquifer-matrix itself or from megapores. The following paragraphs elaborate the discretization 

of all possibilities for the source terms on the boundaries. 

A.7.3 . Source Term w from the Aquifer-Matrix (Positive w) 
at the End of a Reach 

For a positive source term, Eq. (3.33) can be written as 

9 2Dx { CN~f + (§_.1x-1) crtl - E~+l .1x} + 
~2 E1 E2 

(1-B) :~ { CN-1 + (~~ .1x-1) CN - :~ .1x } -

9 uN+i c~t1 
- uN~t cN~f _ (l-B) uN cN- uN-1 cN-1 _ 
~ ~ 



Cn+l wn+l C" n cn+l C" 0 N N _ (1----0) N WN = N - N 
3eN 3eN & 

and rearranged to get 

0 (2Dx + UN~l) cn+l + 
M2 M N-1 

{ 0 2Dx (E1 ax-1) - euN+1 - e w~t1 - ..L }Cf!tt = 
M2 E1 M 3eN & 

- (1----0) 2Dx { CN-1 +(Et M -1) CN - E~ M} + 
M2 E1 E1 

A.7.4. Source Term w from Megapores (Negative w) 
at the End of a Reach 

For a negative source term, Eq. (3.33) can be written as 

and rearranged to get 

e (2Dx + UN~l) cn+l + 
M2 M N-1 

{ e 2Dx (E1 ax -1) - euf:,+1 - ..L }c~t1 = 
M2 E1 M & 

- (1- 0) 20
x { CN-1 + (E1 ax -1) CN - E~ M} + 

ax2 E2 E1 

(l----O) uN cN - Urt1CN-1 + 0 2Dx E~+ 1 
+ 

M M E2 
C p_+ 1 en n - CN" 

0 m;N + (1----0) ;WN & 

118 

(A.46) 

(A.47) 
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Collecting tenns from Eqs. (A.46) and (A.47) for the last element of Eq. (3 .29) yields: 

Subdiagonal element (A.48) 

Diagonal element (A.49) 

or (for positive W) (A.50) 

Superdiagonal element : RN = 0 ~ not defined for the last point (A.51) 

Elements of { F} : SN= - (1-0)u 20
x { CN-1 + (EEt rue -1) CN - EE~ rue}+ 

rue2 2 2 

(l-0)u UNCN - UN_1CN-1 + eu 2Dx E~+t + 
rue rue E2 

e CmwN+l + (1-0) C:hWN - uCN (A.52) 
3eN 3eN .61: 

or (for positive W) : SN= - (l-0)u 20x ( CN-t + (EEi 6x-1) CN - EE~ 6x} + 
6x2 2 2 

(1-B)u UNCN - UN-lcN-1 + eu 2Dx E~+l + 
rue rue E2 

(1-B) CNWN - uCN (A.53) 
3eN .61: 

A.8. Double-Sweep Method in the Megapore-Network 

In Chapter ID, the double-sweep method is used to solve hydrodynamic equations in the 

megapore-network. The heart of the method is finding the relationships between the head 

corrections at both ends of a link and the discharge corrections of the first or the last pipe in 

the corresponding link. The relationships are derived from the mass conservation law (3.34) 

and the discretized hydrodynamic equation (3.45) at each junction of a pipe. From the 

aforementioned relationships, one may deduce the influence coefficients of the double-sweep 

method, as well as how to initialize them. In the following paragraphs, how to obtain the 

coefficients is explained in detail. 
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A.8.1. Derivation of Eq. (3.41) 

Suppose there exists a relation 

L\hi,lp = ~.Ip L\Q1p + Fi.Ip + Hi.Ip L\h1,1 (A.54) 

in which influence coefficients E, F, and H are considered unknown for the moment. 

Substitution of Eq. (A.54) into Eq. (3.48) yields a linear relationship among .i\Q~, M 1p+1, 

and M 1•1 that can be recognized as: 

in which 

(A.55) 

(A.56) 

(A.57) 

(A.58) 

(Note that it is not necessary to doubly subscript a, b, c, and d). Therefore, since a, b, c, and 

dare always known values, E, F, and H can be recursively calculated from one point to the 

next along the forward sweep once E, F, and H have been initialized. 

Initialization of E, F, and His based on Eq. (3.48) written for the first computational 

reach of the first pipe: 

(A.59) 

Comparison with Eq. (A.54), written for i = 2, reveals: 

E2 1 = - ai (A.60) 
' C1 

F2 1 = - di (A.61) 
• C1 

H2 1 = - bi (A.62) 
' Ct 

(Note that, in fact, E, F, and Hare not needed at point 1 of pipe 1; see discussion below.) 



121 

Once E, F, and H are initialized through Eqs. (A.60) to (A.62), they can be recursively 

calculated using Eqs. (A.56)-(A.58) up to the last point on the first pipe on the link; these 

values are designated as Enc•>.•• Faci>.1> and Hae•>.•· Now, in general, this last point is 

contiguous with an inline node. Special recursive relations are needed to carry E, F, and H 

"through" the node; these are developed using the principles of nodal continuity. 

The nodal continuity Eq. (3.38) can be written as follows for the special case of an 

inline node m : 

(Q1p+1+tiQ1p+v - (Q1p+tiQ1p) + Q::,+1+ Wm+~: Mm= 0 (A.63) 

However, 6Q_, can be replaced by its value derived from Eq. (A.54) for i = II(lp). Thus, if 

one again requires that the node m and its contiguous computational points, (II(lp), Ip) and 

(1, lp+l), share the same piezometric head (and thus head correction, i.e., 

6.h11(Ip),lp = M1,1p+l = 6hm ), one can write Eq. (A.54) as: 

~h1,1p+1= E11(Ip),lp 6Q1p+ Fn(Ip),Jp+ H11(Ip),1p- M1,1 

or AQ _ F11(Ip),Ip + Hn(Ip),Ip n. 1 n. 
- o Ip - E E L.lHl,1-E L.lHl,lp+l 

ll(lp),lp Il(lp),lp Il(lp),lp 

Substitution into Eq. (A.63) yields 

(~:-El )6h1,1p+1 = -tiQ1p+1+Q1p-Q1p+1-Q~t 1 - Wm -
a m Il(lp),lp 

Fn(Ip),tp l-Ii:1(1p),Ip Ai. 
- illl} 1 

E11(tp),lp En(Ip),lp ' 

Eq . (A.66) can then be solved for M 1•1p+1 as follows: 

6h1,Ip+t= E1 ,Ip+16Q1p+l + F1,Ip+1+ H l,lp+1M1,1 

One can recognize that this is a particular realization of Eq. (A.54) in which 

(A.64) 

(A.65) 

(A.66) 

(A.67) 



where 

- 1 
Et,lp+t= Denom 

Q Q f'\Jl+l W FiI(lp),lp Ip- lp+l-"lm - m -
F _ En(lp),tp 

l ,lp+l- Denom 

_ Hn(lp),Ip/iE 
H _ II(lp),lp 

l ,lp+l- Denom 

aw 1 Denom=---~-
dhm En(lp),lp 

The forward sweep for a link ends when the recursion process reaches the last 

computational point Il(LP) of the last pipe LP. At this point, Eq. (A.54) becomes: 

Afln(LP),LP = En(LP).LP 6QLP + F11(LP),LP + Hn(LP).LP 6h1.1 
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(A.68) 

(A.69) 

(A.70) 

(A.71) 

(3.50) 

This is equivalent to Eq. (3.41), with "u" denoting the last point of the link (Il(LP),LP) and 

"d" denoting the first point (1,1). 

A.8.2. Derivation of Eq. (3.40) 

Equation (3.40) results from a derivation similar to the one shown above for Eq. (3.41). 

Suppose that there exists a relation 

(A.72) 

From Eq. (A.55), one finds that 

(A.73) 

Substitution of Eqs. (A.72) and (A.73) into Eq. (A.54) produces: 
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(A.74) 

or (A.75) 

Eq. (A.75) is another linear relation among M 1• 1•1P, .1h1•1, and .1Q1• Thus it is equivalent to 

Eq. (A.72) written for point (i+ 1, Ip), and one can identify: 

where 

-biE~.lp 
EEi+l,lp Denom 

Hl-Ij _ ai l-Ij+1.1p/ Ei+l,Jp- bi Hl-Ij,lp 
+I.Ip Denom 

a· Denom= --1
- +Ci 

Ei+ l ,lp 

(A.76) 

(A.77) 

(A.78) 

(A.79) 

Therefore, once al' bl' cl' and d1 have been calculated for a computational reach (i, i+l), and 

E, F, and H have been calculated for point i+l, then EE, FF, and HH can be recursively 

carried through to point i+ 1 using their values at point i. 

Initialization of EE, FF, and HH for point (2, 1) is obtained directly from Eq. (A.59); in 

fact, this initialization is identical to that used for E, F, and Hin Eqs. (A.60)-{A.62). Thus 

(A.80) 

(A.81) 

(A.82) 

Just as for the E, F, and H recursion , one must also be able to carry EE, FF, and HH 
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"through" an inline node separating two pipes. At the last point Il(lp) of pipe Ip, 

6hn(lp),1p= EE11(Jp).1p6Q 1 + FFn(lp),Jp+ HHn(lp),1pM1,1 (A.83) 

The requirement of a common head at both points contiguous with an inline node is expressed 

as 

h11(1p).1p+ M11(1p),1p=h1,1p+t+ M1.1p+1 

Solution of Eq.(A.84) for 6hn(Jp),Jp and substitution into Eq. (A.83) then yields 

or 

ht,lp+t+ M1,lp+I- h11(Jp),1p= EE11(Jp),Jp6Q1 + FFn(Jp),lp + HHn(Jp),JpMt,1 

6h1,Jp+t= EEn(lp),Ip6Q I+ FFn(Jp),Jp+ hn(Jp),Jp- ht,lp+t+ HH11(1p),1pM1,1 

which is the same as Eq. (A.72) written for point (1, lp+l) with 

EE1.1p+1= EE11(1p),lp 

FFI.lp+ 1= FF11(lp).1p+ hn(lp),lp - h1.1p+l 

HH1 ,1p+1= HHn(lp),lp 

(A.84) 

(A.85) 

(A.86) 

(A.87) 

(A.88) 

Thus during the link forward sweep not only E, F, H, but also EE, FF, HH, can be 

initialized and recursively calculated along pipes and through inline nodes. At the end of the 

last pipe of the link, Eq. (A.72) is written as 

Mn(LP).LP = EEu(LP).LP 6Q 1 + FFn(LP),LP + HHn(LP).LP 6h1.1 (3.51) 

This equation is the same as Eq. (3.40) with "u" denoting the last point of the link and "d" 

denoting the first one, as was the case for Eq. (3.41). 
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A.8.3. Link Return Sweep 

The preceding derivations have shown that Eqs. (3.40) and (3.41), combined with the 

nodal continuity Eq. (3.38) for all looped nodes, lead to a solution for all looped nodal head 

corrections, Eq. (3.44). The only remaining task in an iteration is to recover the pipe 

discharges and head corrections. 

Jn the so-called link return sweep, each link is considered individually. The return sweep 

proceeds back down the link in the reverse order of the forward sweep. The discharge 

correction in the last pipe, 6QLP, is first computed from Eq. (3 .50). Thus 

tiQu> = 6h11(LP),LP- fiI(LP),LP - fltI(LP),LP 6hi,l 

En(LP).LP 
(A.89) 

(Recall that 6h1.1 and 6hn(LP).LP are both known from the looped-nodal solution Eq. (3.44), 

these two points being contiguous with, and sharing the same head as, their associated looped 

nodes). Once 6QLP is thus known, Eq. (A.54) can be successively applied to each point of 

the pipe LP to recover the head corrections. Thus; 

(A.90) 

When the return sweep proceeds down to the first point of the last pipe LP, the head 

correction for the associated in.line node m is recovered simply as 

(A.91) 

and also 

(A.92) 

Then 6QLP-i is computed using Eq. (A.92) and Eq. (A.89), with LP-1 replacing LP. Using 

Eq . (A.90), the return sweep continues in this fashion down to the second point of the first 
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pipe. (Recall that E, F, H, and EE, FF, HH were initialized for this point). The head 

correction for the first point of the first pipe is obtained quite simply from that of its associated 

looped node. 

At the end of one iteration of this entire procedure, all pipe heads and discharges are 

corrected so as to better satisfy water continuity at nodes and energy conservation in pipes. 

The chief advantage of the procedure is that it deals only with a matrix involving only the 

number of looped nodes, not all nodes, thereby minimizing computational time required to 

solve the matrix. 
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APPENDIX B 

DESCRIPTION OF THE COMPlITER CODE LABYRINTII 

B.1. Introduction 

This appendix presents an overview of the Labyrinth code. First, the general skeleton of 

the code is explained briefly. Then preparatory operations to run the code are presented. 

Next, the major parts of the code are explained. Required input data and memory and time 

requirements to run the present model are given. 

Currently the computer code Labyrinth can model three-dimensional groundwater flow 

and pollutant transport in karst regions; that is, where a megapore- or pipe-network exists 

inside an aquifer or porous media. The topology of both the megapore- or pipe-network and 

porous media or aquifer are needed as geometric input data Despite the importance of this 

information, detailed explanations of topology data are not given in this appendix due to the 

limited space, but may be found in the Labyrinth manual. 

The Labyrinth code was written in FORTRAN 77 for implementation in Apollo 

workstations. The code was written to adhere as much as possible to standard 

FORTRAN 77. Porting the code to any other computer needs only minor modification, in 

particular in subroutines that calculate CPU time of the simulation. Since calculation of CPU 

time usually depends on the specific machine used in the simulation, the aforementioned 

subroutines calculate CPU time by calling the Apollo-specific routines, 

PROC1_$GET_CPlIT, CAL_$FLOAT_CLOCK, CAL_$DECODE_LOCAL_TIME, and 

CAL_$WEEKDAY. 

An overview of the Labyrinth code is presented in the general flow chart, Figure B .1. 

The code is divided into 52 files, consisting of 86 subroutines. Since the code is modularly 
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developed, it is easy to modify for specific needs or additional capabilities. All linear algebra 

computations are carried out using UNPACK, a linear package solver developed by Argonne 

National Laboratory, Chicago, Illinois, U.S.A. The Labyrinth code uses the following 

subroutines from UNPACK: IDAMAX, DAX.PY, DSCAL, DGEFA, DGESL, and DGTSL. 

Main Program 
LABYRINTII 

1. Reading Main Input 
2. Compute Dynamic Pointer 

PILOT 
1. Reading Data : 

Geometry, Initial Conditions, 
Boundary Conditions 

2. Distribute The Dynamic 
Allocation of Variables 

OOTIME 

Managing the Computations 
Marching with Time 

OOITER 
Computations for One Time Step 

OOMASS 

Mass Conservation Computation 
for One Time Step 

SOIL 

Aquifer-Matrix 
Hydrodynamic Computation 

Pipe- Network 
Pollutant Transport Computation 

WATERMASS 

1. Water Discharge Computation 
2. Process the Output 

1. Pollutant Flux Computation 
2. Process the Output 

Figure B.1. General Flowchart of the Labyrinth Code 

B.2. Preparatory Operations 

The first important step in preparing the input data is visualization of the porous media or 

aquifer-matrix in a three-dimensional grid. The geometry of the aquifer must, then, be made 

to confonn to the finite-difference grid used in the simulation. All the comer points of the 
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aquifer geometry are numbered according to the convention of the so-called "soil-topology." 

The second important step is numbering all the nodes and pipes in the megapore- or pipe

network. The first step takes approximately 50% of the overall preparation time while the 

second step takes 25%. The Labyrinth code has the capability of checking the input data for 

errors, but this capability is not 100% reliable. After these two steps are finished, one can 

proceed to write the data into a FORTRAN input file. 

Input data is divided into 26 records, some of fixed and others of variable length. 

Section 4 below explains input data needs in general, and each record is explained in detail in 

the Labyrinth manual. Since the second record performs a unique function for the code, it 

must be explained before other records. This record consists of fourteen inputs that define the 

"words" needed to run the simulation. If the available "words" are less than the needed 

"words," then the code will stop even before starting the simulation. In such a case, one 

should change the DIMENSION of the variable Tin the main program to a higher number and 

recompile the code. A "word" is defined as total bytes of random access memory occupied by 

one REAL FORTRAN variable. 

B.3. Hydrodynamic and Pollutant Computations 

In each time step during the simulation, before actual computations are done in other 

subroutines, the DOTIME subroutine manages necessary preparations for the next time step. 

Transfer of variables; i.e., keeping records of value of the variables for the previous time step, 

and loading input of time dependent boundary conditions are carried out in this subroutine. 

The DOTIME subroutine also handles necessary operations before and after time-step 

marching operations, such as initializing variables in the beginning of the marching, and at the 

end of the marching, generating binary output if needed. (Binary output is usually needed if 

users want to continue a previous simulation. By reading this binary output, the new 

simulation may continue from the end of the previous simulation, without having to repeat the 

previous simulation.) After these preparations, for one time step, the computation of 



hydrodynamic and pollutant transport is passed to the DOITER subroutine, and the 

computation of mass conservation is passed to the DOMASS subroutine. 

B.3.1. Piezometric Head and Discharge Computations 
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Piezometric head and discharge computations are divided into two parts. The first part is 

the computation in the aquifer-matrix or porous media in the SOIL subroutine. The second 

part is the computation in the megapore- or pipe-network using the subroutine PIPE. 

For each time step, the aquifer-matrix computation is carried out in the SOIL subroutine. 

Jn this subroutine, the piezometric head in the aquifer-matrix is computed and stored in 

HSOIL. The same computation for the megapore- or pipe-network is done in the PIPE 

subroutine. Jn the PIPE subroutine, both piezometric heads and discharges for all pipes are 

computed and stored in HPIPE and QP, respectively. 

Jn the WA TERMASS subroutine, the discharges at points of interest are computed, as 

well as those coming into and leaving the pipe-network or aquifer-matrix. This subroutine 

uses the results from both the PIPE and SOIL subroutines. Users may sense whether the 

mass conservation law is satisfied by checking the overall discharge continuity produced by 

the WA TERMASS subroutine. 

All output from the WATERMASS subroutine can be controlled by putting appropriate 

values into control variables provided in the code. The control variables themselves are 

explained in great detail in the Labyrinth manual. Users may also request a hard copy of the 

piezometric head of the aquifer-matrix, HSOIL, at several elevations. This output is specially 

prepared to be inputted into any graphic or charting program to produce contour graphs. A 

tabular form of the discharge history at sinks and springs can also be produced so users may 

make hydrographs. All hard copies from the WA TERMASS subroutine that are intended to 

be used in a charting program are tab-delimited ASCII files. 

B.3.2. Concentration and Concentration-Flux Computations 

The structure of concentration and concentration-flux computations is analogous to those 
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of piezometric head and discharge computations mentioned in the previous section. For each 

time step, the computation in the aquifer-matrix is carried out in the SOILPOLL subroutine 

and in the PIPEPOLL subroutine for the megapore- or pipe-network. In SOILPOLL, 

pollutant concentration in the aquifer-matrix is computed and stored in CSOIL variables. In 

PIPEPOLL, pollutant concentration for all pipes is computed and stored in CPIPE. 

In the POLLMASS subroutine, the pollutant-fluxes at points of interest are computed, as 

well as those coming into and leaving the pipe-network or aquifer-matrix. This subroutine 

uses the results from both the PIPEPOLL and SOILPOLL subroutines. 

B.4. Input Data Needs 

This section explains in general the input requirements of the Labyrinth code. More 

detailed explanations may be found in the code manual. The input data is divided into 26 

records. 

The first 4 records are needed in the main program. Record 1 defines the title of a run. 

Record 2, consisting of 14 integer dimensional inputs, defines the maximum size of the 

corresponding input. Record 3, consisting of 20 inputs, defines logical and integer-type 

control parameters. This record controls which computation is to be carried out and also 

defines the printing control variables. Record 4 consists of 10 inputs controlling iterations 

and frequency of output to files. This record also turns a binary restart file off or on. 

The following records are needed in several subroutines. Record 5 consists of 5 real 

variables defining the time variables, such as beginning and ending simulation times, time 

increment, etc. Record 6 consists of 5 real variables defining the implicitation factor of the 

finite-difference method, acceleration of gravity, and default values for megapore equivalent 

diameter and Strickler coefficients. Record 7, which is of variable length, consists of three 

groups of inputs defining the aquifer-matrix grid. Record 8 consists of 5 integer-type inputs. 

This record has to. be inputted for each megapore or pipe node. Record 9 is an 80-character 

alphanumeric identifier for a link. Record 10 consists of 5 integer variables defining the 

topology of the megapore- or pipe-network. Since one Record 9 for each link must be 
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followed by a Record 10 for each pipe on the corresponding link, Records 9 and 10 must be 

inputted in pairs for all links in the network. Record 11-13 lists all the node numbers, link 

numbers, and elevation numbers, respectively, whose data needs to be printed. Record 14, 

which is of variable length, consists of three groups of inputs defining the type of boundary 

conditions in the aquifer-matrix. Record 15 consists of one integer variable and several sets 

of real variables defining the time dependent boundary conditions for each boundary point. 

Record 16 defines the boundary of a cubical aquifer-matrix. If the geometry of the aquifer

matrix is not cubical, then users must set the CUBE variable to F ( = logical variable 

.FALSE.). 

The most challenging record of all is Record 17, which defines the arbitrary geometry of 

an aquifer-matrix. By inputting data into this record, the user assigns one of 118 distinct soil 

nomenclatures or soil topologies to each boundary point in the aquifer-matrix. For one 

aquifer-matrix shape there will be several ways to input data into Record 17. This record has 

variable length depending on the complexity of the aquifer-geometry. This is a complex task 

since it defines a three-dimensional geometry, and most of the input preparation time is spent 

on it. 

Record 18 consists three groups of inputs in which the last input is of variable length. 

This record defines aquifer-matrix properties such as hydraulic conductivity, specific storage, 

and coefficient of mass-exchange. Record 19 consists of five groups of inputs in which the 

fourth input is of variable length. This record essentially defines initial conditions of both the 

pipe-network and aquifer-matrix. The last input of this record is intended to be used as a 

continuation run of a simulation. That is, users can end any simulation at any time and then 

store all results in a binary file, for use as an initial condition input file for the next simulation. 

Record 20 defines the distribution factor used in fractional step computations. Record 21, 

which is of variable length, defines the surface boundary condition for the aquifer-matrix. 

The rest of the inputs define all variables for pollutant transport computations. If 

pollutant transport is not needed; i.e., if DOPOLL in Record 3 is set to FALSE, these inputs 

are ignored by the program. Record 22, which is of variable length and has the same 
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structure as Record 14, consists of three groups of inputs defining the type of pollutant 

boundary conditions in the aquifer-matrix. Record 23, which has the same structure as 

Record 15, consists of one integer variable and several sets of real variables defining the time 

dependent boundary conditions for pollutants at each boundary point. Record 24, consisting 

of four groups of inputs, in which the last is of variable length, defines aquifer-matrix 

properties such as effective void ratio and bulk dispersion coefficients. Record 25, 

consisting of four groups of inputs in which the third input is of variable length, essentially 

defines pollutant initial conditions for both the pipe-network and aquifer-matrix. The last 

input of this record is intended to be used as a continuation run of a simulation, as explained 

for Record 19. The last record, Record 26, which is of variable length, defines the pollutant 

boundary condition at the surface of the aquifer-matrix. Record 26 has the same strucrure as 

Record 21. 

B.5. Memory and Time Requirements 

Memory and time requirements depend on the complexity of the simulation performed. 

For the present srudy, memory reserved by the code was about 700,000 words of which only 

85% was needed to run simulations performed during this srudy. The memory requirement is 

greatly influenced by the grid size used in the finite-difference computation, in particular, the 

grid size for the aquifer-matrix. The memory requirement is computed by the code based on 

the input in Record 2. 

At the end of each simulation, the time needed to run the simulation is recorded. For the 

present srudy, time needed to finish one simulation typically ranged from one to five hours 

using an Apollo 400t: computer. On an Apollo DNlOOOO the execution time decreased by 

25%. Hydrodynamic computations used 81 % of the time as compared with 17% of time for 

pollutant transport computations; the remaining 2% of the time was used for managing input 

and output of the code. 
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