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STATISTICAL AND PROBABILITY ANALYSIS
OF HYDROLOGIC DATA
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I. INTRODUCTION

A. Importance of Statistical and Probability Analysis

Quantitative scientific data may be classified into two kinds: experimental data and
historical data. The experimental data are measured through experiments and usually
can be obtained repeatedly by experiments. The historical data, on the other hand,
are collected from natural phenomena that can be observed only once and then will
not occur again. Most hydrologic data are historical data which were observed from
natural hydrologic phenomena.

Since hydrologic data are the only source of information upon which quantitative
hydrologic investigations are generally based, their measurements have been con-
tinuously expanding and resulting in ever-increasingly large amounts of sampled data.
Statistics deals with the computation of sampled data, and probability deals with the
measure of chance or likelihood based on the sampled data. The mounting quantities
of hydrologic data can suitably be expressed in statistical terms and be treated with
probability theories. Furthermore, natural hydrologic phenomena are highly erratic
and commonly stochastic in nature, and therefore are amenable to statistical inter-
pretation and probability analysis. Section 8 covers some fundamental principles
and methods of statistics and probability that are useful in the solution of hydrologic
problems.

One of the important problems in hydrology deals with interpreting a past record of
hydrologic events in terms of future probabilities of occurience. This problem arises
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in the estimates of frequencies of floods, droughts, storages, rainfalls, water qualities,
waves, etc; the procedure involved is known as frequency analysis. The methods of
frequency analysis and some fundamentals in statistics and probability are discussed
in this Part I of Section 8.

For general discussions on statistical and probability analysis of hydrologic data,
reference may be made to Refs. 1-4. For frequency analysis of hydrologic data in
particular, Refs. 5-8 may be found to be useful.

B. Hydrologic Frequency Studies

1. Flood and Streamflow Studies. The frequency analysis of streamflow data
is believed to have been first applied to flood studies by Herschel and Freeman (see
[9]) in 1880 to 1890 by means of a graphical procedure of using flow-duration curves
(Subsec. 14-V-A). According to Fuller [10], the use of probability methods in runoff
studies had been suggested to him in 1896 by George W. Rafter. Owing to the dearth
of long-period records on American rivers at that time, the use of probability methods
for flood frequency analysis was apparently hindered until later years.

The Gaussian law of probability, or the normal law of errors, is the basic and simplest
tool for frequency analysis. It was therefore used for flood studies in the very early
days. For such studies, Horton [11] discussed briefly in 1913 the earlier applications
of the Gaussian law, and in 1914 Fuller [10] gave a full account of the first really
comprehensive study of statistical methods applied to floods in the United States.

However, Hazen [12] soon discovered that if the logarithms representing the annual
floods are used instead of the numbers themselves, the agreement with the normal law
of errors is closer. This is true because the frequency distributions of annual floods
are usually skewed or asymmetrical and the distribution can be suitably represented
by such frequency distribution laws as the Galton, or lognormal-probability, law.
He proposed the use of lognormal-probability paper [13] and developed a procedure of
analysis [14]. Hazen’s method requires a table of factors for computing theoretical
frequency curves by means of the coefficients of variation and skewness. The table
[13, p. 219; 14, pp. 49, 188] was originally obtained by empirical methods and hence
has been found to be inaccurate. A corresponding table of exact factors based on a
mathematical procedure was later prepared by Chow [15] (Table 8-I-1). For the
study of streamflow variability, Lane and Lei [16] made use of the lognormal-prob-
ability plotting of flood flows to determine the variability index (Subsec. 14-V-A).

Other laws of frequency distribution and methods of frequency analysis of floods
were also proposed by many hydrologists. Type 1 and Type 3 of Karl Pearson’s
curves of frequency distribution were put in a form convenient for use in flood studies
by Foster [17]. A table of frequency factors similar to Hazen’s table was given by
Foster and extended by Switzer and Miller [18]. Hall [19] proposed a special “hydrau-
lic probability paper” in which the probability scale was obtained empirically from
flow-duration curves of 35 California streams. Goodrich [20] proposed a special
skew-frequency paper which was later tested and refined by Harris [21]. Up to 1934,
Slade [22] derived various skew probability functions to which was introduced an
ultimate limiting magnitude of flood flow or the limiting flood potentialities of the
drainage basin.

In 1941, Gumbel [23] published the first of a great number of papers (e.g., Refs.
24-29) on the application of the Fisher-Tippett theory of extreme values to flood
frequency analysis. The use of extreme-value theory has been further extended by
other hydrologists. Powell [30] derived an extremal probability paper for graphical
application of the method. Cross [31] soon applied it to the study of flood frequencies
in Ohio. As the extremal distribution assumes a constant skewness, the variate of a
given recurrence interval should theoretically depend on the coefficient of variation
and the mean. Potter [32] applied this assumption to 370 extremal probability curves
and derived practical graphic relationships between variate, mean, and coefficient
of variation. Benson [33] developed a synthetic ““1,000-year record” of peak floods
based on a straight-line plotting on the extremal probability paper.

Both the lognormal-probability law and the extreme-value law have been used
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extensively in recent years. From a theoretical point of view, Chow [15] has shown
that the extreme-value law is practically a special case of the lognormal-probability
law, or it is practically identical with the latter for a skewness coefficient of 1.139 and a
coefficient of variation equal to 0.364. He also proposed a flexible straight-line fitting
of flood data based on the merits of both methods. See Sections 14 and 25-I and
Refs. 4-8 and 34-49 for other discussions of flood frequencies.

2. Rainfall Studies. Many frequency studies on rainfalls and other meteorologi-
cal events have been made. An extensive rainfall frequency study in the United
States was first made by Yarnell [50] in 1935 (Subsec. 9-VI). This study produced
the well-known Yarnell rainfall frequency data, which are a set of 56 isohyetal maps
of the continental United States, covering the range of durations of 5, 10, 30, 60, and
120 min for 2-year frequency and of the same durations plus 4, 8, 16, and 24 hr for
5, 10, 25, 50, and 100-year frequencies. For longer durations of 1, 2, 3, 4, 5, and 6
days, the Miami Conservancy District [51] published the data for 15, 25, 50, and 100-
year frequencies in 1936, covering that part of the continental United States east of
the 103d meridian.

Since Gumbel proposed the Type I extremal distribution for flood frequency analy-
sis, Chow [52] applied it to the study of the rainfall-intensity frequency in Chicago,
Illinois in 1953, and also published a design chart [53] for approximate determmatlou
of rainfall frequenc1es in the continental United States.

As more rainfall data were collected, extended and detailed rainfall frequency analy-
ses were made by the U.S. Weather Bureau. In 1961, a rainfall frequency atlas of
the United States was published by the Weather Bureau, which completely revises
and supersedes the Yarnell data ([54]; Subsec. 9-VI).

Comparisons of several methods of rainfall frequency analysis have been made by
Huff and Neill [55] and by Hershfield [56].

3. Drought and Low Streamflow Studies. Type III extremal distribution was
first proposed by Gumbel [57] for drought frequency analysis in 1954. The method
was later applied to actual problems [29, 58], including graphical applications to
Michigan streams [59] and to streams in eastern United States [60].

Other frequency studies of droughts and low streamflows are discussed in Section 18
and Refs. 61-63.

4. Water Quality Studies. Frequency analysis has been applied to virus,
bacteria, alkalinity, salinity, chlorides, sulfates, and other dissolved and undissolved
materials in water. Some recent studies are discussed in Ref. 64.

5. Water Wave Studies. Frequency analysis of water waves constitutes its own
unique field, as it has its special purposes in oceanography. Important developments
in this field may be found in Refs. 65-69. The Type I extremal distribution also has
been applied to wave frequency analysis first by Gumbel [70] and Jasper [71], and
later by Bennet [72] and others.

II. FUNDAMENTALS

A. Statistical Variables

Hydrologic data can be treated as statistical variables. In statistics, the whole
collection of objects under consideration is called a population, or universe. A segment
of a population may have one or more characteristics associated with them. Their
characteristics are called variables, usually designated as X. An individual observa-
tion or the value z of any variable X is known as a variate. In hydrologic phenomena,
for example, the variablé X may be the depth of rainfall, and it may have a value,
say, s '='1.45in; i

Variables may be obtained by an experiment consisting of random operations known
as trials. The result of an unspecified trial is called a random variable. The collection
of all possible values for the random variables associated with an experiment is called
a sample space. In hydrologic phenomena, the observations for a certain period may
be considered as a trial. By this trial, the rainfall depth, for example, is obtained as a
random variable. Since the value of the rainfall depth can have all possible nonnega-
tive values, the sample space is infinite.
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Random variables are of two kinds: discrete and continuous. The discrete random
variable has finite sample space, whereas the sample space of a continuous variable
has an interval of real numbers or a union of such intervals. For example, the number
of rainy days is a discrete random variable, while the depth of rainfall is a continuous
random variable. For practical purposes, however, it is sometimes necessary to treat
arbitrarily the discrete variables as continuous variables by fitting a continuous func-
tion to the variates, or vice versa by breaking down the continuous variable into
intervals and then grouping them as discrete numbers.

B. Frequency, Probability, and Statistical Distributions

1. For Discrete Random Variables. For discrete random variables, the number
of occurrences of a variate is generally called frequency. When the number of occur-
rences, or the frequency, is plotted against the variate as the abscissa, a pattern of
distribution is obtained. This pattern is called frequency distribution (Fig. 8-I-1a).
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Fig. 8-I-1. Linearization of a statistical distribution. (a) Frequency or probability
distribution curve; (b) cumulative probability curve plotted on rectangular coordinates-
(¢) cumulative probability curve linearized on probability paper.
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When the number of occurrences of a discrete variate is divided by the total number
of occurrences, the result is a probability p of the variate. The total probability
for all variates should be equal to unity, or =p = 1. Distribution of the probabilities
of all variates, instead of their frequencies, is called probability distribution (Fig. 8-1-1a).

The ordinates of the frequency distribution and its corresponding probability
distribution are obviously proportional to each other. Both distributions may be
called statistical distributions.

The cumulative probability of a variate (Fig. 8-I-1b) is the probability that the
random variable has a value equal to or less than certain assigned value, say =z.
This cumulative probability may be designated as P(X < z). Thus, the probability
of being equal to or greater than z is equal to 1-P(X < z) or designated by PixX >t

2. For Continuous Random Variables. For continuous random variables, the
probability of a variate can be considered as the probability p(z) of a discrete value
grouped in the range from z to « + Az. As z is a continuous value or Az becomes dz,
the probability p(z) becomes a continuous function called probability density.
The cumulative probability P(X < z) is an integral function of the probability density
(Fig. 8-1-1b), or :

PX <2 = / _: p(z) dz (8-I-1)

where the probability distribution is considered unlimited. When the upper limit
of £ = o, P(X <) =1. If the probability distribution is limited, or the prob-
ability density p(z) is defined only for a range of a < x < b, the above equation is
also valid by assuming that p(z) = 0 for values outside the range of z.

C. Statistical Parameters

The characteristics of a statistical distribution may be described by statistical
parameters. While such parameters are many, only the important ones are defined
below:

1. Measures of Central Tendency. The parameters generally representing
measures of the central tendency of a statistical distribution are the averages, including
mean, median, and mode.

a. The Mean. There are three kinds of mean: arithmetic, geometric, and harmonic.

The familiar arithmetic mean is usually referred to simply as the mean and is desig-
nated by :

2z

L= 5 (8-1-2)

where z is the variate and N is the total number of observations. The above equation
gives the sample mean, while the population mean is usually denoted by x. It may
be noted that an unbiased estimate of the population mean is equal to the sample
mean.

The geometric mean is the Nth root of the product of N terms or can be designated by

Fyiz= (my s xpopn.> » xN) VN (8-1-3)

The logarithm of the geometric mean is obviously the mean of the logarithms of the
individual values. In alognormal distribution, the geometric mean has the properties
analogous to those of the arithmetic mean of a normal distribution.

The harmonic mean is the reciprocal of the mean value of the reciprocals of individual
values. It can be expressed as

N
=3 1/2) (8-1-4)

* Theoretically, for discrete variables,1 — P(X < 7) = P(X >2)orl — P(X < z) =
P(X > z), since P(X < 2) + P(X = z) + P(X > ) = 1; and for continuous variables,
1 —P(X <2) = P(X > ), since P(X =2z) is infinitesimal. For practical purposes,
P(X < x) + P(X > 2) = 1 is acceptable for both discrete and continuous variables.
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b. The Median. The median is the middle value or the variate which divides the
frequencies in a distribution into two equal portions.

The arithmetic mean is more commonly used than other measures of central tend-
ency as a ‘normal’’ or “standard’” on account of its computational simplicity and,
in general, its greater sampling stability. For example, the U.S. Weather Bureau
has a long-established practice of using the mean as the precipitation normal. How-
ever, in extremely skew distributions the mean may be misleading. In such cases, the
median will provide a better indication, particularly for a continuous variable because
all variates greater or less than the median always occur half the time. Also, the use
of median makes it easy to locate an internal estimate by adding and subtracting a
specified amount from this central value so that the portions of the distribution outside
the interval have the same probability.

¢. The Mode. In a distribution of discrete variables, the mode is the variate which
occurs most frequently. In a distribution of continuous variables, this is the variate
which has a maximum probability density, i.e., dp/dz = 0 and d*p/dz? < 0.

2. Measures of Variability. The important parameters representing variability
or dispersion of a distribution are mean deviation, standard deviation, variance, range,
and coefficient of variation.

a. The Mean Deviation. The mean of the absolute deviations of values from their
mean is called mean deviation, or

3|z —

M.D. N

(8-1-5)

This parameter was used frequently to describe meteorological data, but it has been
now superseded largely by the standard deviation.

b. The Standard Deviation. This parameter as a measure of variability is most
adaptable to statistical analysis. It is the square root of the mean-squared deviation
of individual measurements from their mean and is designated by

2z — u)t
¢ = V——N— (8-1-6)

This equation represents the standard deviation of the population. An unbiased
estimate of this parameter from the sample is denoted by s and computed by

gits 233: :ii)2 2] \/;Ji 2 (x — 32 (8-I-7)

where 22 = (Zz?)/N.
The standard deviation of the sampling distribution of a statistical parameter is
known as the standard error of that parameter. It can be shown that the standard

error of the mean is o/ \/N , the standard error of the standard deviation is o/ \/ Qﬁ,
and the standard error of the difference between the means of samples from two
independent populations is \/ez? + 32 where oz = 0./\/N; and o5 = 0,/ V/ N>
with ¢, and o, equal to the standard deviations from the two populations and N, and
N equal to the numbers of variates sampled from the respective populations.

¢. The Variance. The square of the standard deviation is called variance, which is
denoted by o2 for the population. The unbiased estimate of the population variance
gt

d. The Range. The difference between the largest and the smallest values is the
range.

e. The Coefficient of Variation. The standard deviation divided by the mean is
called the coefficient of variation, or

G =

(8-1-8)

b -
8l
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3. Measures of Skewness. The lack of symmetry of a distribution is called
skewness or asymmetry. The statistical parameter to measure this property is the
skewness defined as

B (8-19)

This equation represents the skewness for the population. An unbiased estimate of
this parameter from the sample is

N 3
“=(N—1)(N—2)Z(”_’”)a
N2

= m__z) (8 — 32°% + 273) (8-1-10)

where z¢ = (22%) /N and other notations have been defined previously.
One commonly used measure of skewness is the coefficient of skewness represented by

C, =

Lls
%l s

(8-I-11)

For a symmetrical distribution, C; = 0. A distribution with C, > 0 is said to be
skewed to the right (with a long tail on the right side), while a distribution with
C, < 0 is said to be skewed to the left.

Another measure of skewness often used in practice is Pearson’s skewness, or

p —mode Z — mode

Sk (8-I-12)

o S

D. Statistical Moments

In a statistical distribution, the 7th moment about the origin = 0 of the variates

Z1, T2, . . ., Tk, having a weighted mean Z,is
3 k
e AR _ (8-1-13)
i=1
where p; is the frequency or probability of z; and N = Zp; with ¢ = ok

The 7th (central) moment about the weighted mean # of the variates 21, zs, . . . ,
Lk, is :

k
Hr = % Z pi(Ti — p)" (8-1-14)
i=1
For the first three moments, with » = 1, 2, and 3, it can be shown that
gi= 0
ue = vz — »2 = ¢g? (8-1-15)
us = vz — 3var1 + 213 = gl
and vy =12
ve = po + »,? (8-1-16)

ps + 3uavy + »id

The above equations show that the mean is equal to the first moment about the origin,
the standard deviation is the square root of the second moment about the mean, and
the skewness is the third moment about the mean divided by the cube of the standard
deviation. For a detailed discussion of the statistical moments, see Refs. 8, 73, and 74.

Moments of order higher than three are not commonly used in the statistical analy-

V3
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sis of hydrologic data because most hydrologic data do not have sufficiently long length
of record and thus cannot warrant reliable estimates of the moments of higher order.

E. Hydrologic Models, Processes, and Systems

Hydrologic models considered here are mathematical formulations to simulate natural
hydrologic phenomena which are considered as processes or as systems.

Any phenomenon which undergoes continuous changes particularly with respect to
time may be called a process. As practically all hydrologic phenomena change with
time, they are hydrologic processes. If the chance of occurrence of the variables
involved in such a process is ignored and the model is considered to follow a definite
law of certainty but not any law of probability, the process and its model are described
as deterministic. On the other hand, if the chance of occurrence of the variables is
taken into consideration and the concept of probability is introduced in formulating
the model, the process and its model are described as stochastic or probabilistic. For
example, the conventional routing of flood flow through a reservoir is a deterministic
process (Sec. 25-11), and the mathematical formulation of the unit-hydrograph theory
(Subsec. 14-II1I) is a deterministic model. As the probability of the flow is taken into
account in the probability routing (Subsec. 14-V-C), the process and the queuing
model employed to simulate the process are considered as stochastic or probabilistic.

Strictly speaking, a stochastic process is different from a probabilistic process, as
the former is generally considered as time-dependent and the latter as time-independ-
ent. For the time-independent probabilistic process, the sequence of occurrence of
the variates involved in the process is ignored and the chance of their occurrence is
assumed to follow a definite probability distribution in which variables are considered
pure-random. For the time-dependent stochastic process, the sequence of occurrence
of the variates is observed and the variables may be either pure-random or non-pure-
random, but the probability distribution of the variables may or may not vary with
time. If pure-random, the members of the time series are independent among them-
selves and thus constitute a. random sequence. If mon-pure-random, the members
of the time series are dependent among themselves, are composed of a deterministic
component and a pure-random component, and thus constitute a nonrandom sequence.
For example, the flow-duration-curve procedure (Subsec. 14-V-A) is probabilistic,
whereas the probability routing mentioned above is stochastic.

In reality, all hydrologic processes are more or less stochastic. They have been
assumed deterministic or probabilistic only to simplify their analysis. Mathemati-
cally speaking, a stochastic process is a family of random variables X (¢) which is a
function of time (or other parameters) and whose variate z; is running along in time ¢
within a range 7. Quantitatively, the stochastic process, which may be discrete or
continuous, can be sampled continuously or at discrete or uniform intervals of ¢ = 1,
2, . . ., and the values of the sample form a sequence of z1, x5, . . . , starting from a
certain time and extending for a period of 7. This sequence of sampled values is
known as a time series, which may be discrete or continuous. For example, a hydro-
graph is a continuous time series. Daily, monthly, and annual discharges represent a
discrete time series.

The random variable X (¢) has a certain probability distribution. If this distribution
remains constant throughout the process, the process and the time series are said to
be stationary. Otherwise, they are nonstationary. For example, a virgin flow
(Subsec. 14-I) with no significant change in river-basin characteristics or climatic
conditions for the period of record is considered as a stationary time series. If it is
affected by man’s activities in the river basin or nature’s large accidental or slow
modifications of the rainfall and runoff conditions, the recorded or historical flow is a
nonstationary time series. Since a nonstationary process is very complicated mathe
matically, hydrologic processes are generally treated as stationary.

For clarity, the classification of hydrologic processes may be shown below. It may
be noted that actual hydrologic processes are processes following the path of the heavy
line while the processes following the thin lines are only approximations which may be
assumed in order to simplify the analysis.

e AT T, e o
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Hydrologilc process

|
Deterministic process Stochastic or probabilistic process
( Chance-independent) (Chance-dependent )
Probabilistic process Stochastic process

( Time-independent or sequence ignored) (Time-dependent or sequence considered)

I

Pure-random process  Pure-random process Non-pure-random process

=

Stationary process Nonstationary process
(Time-independent (Time-dependent
distribution) distribution)

In this section, the probabilistic models and the frequency analysis of the prob-
abilistic process are mainly discussed, since the stochastic process and various sto-
chastic models are covered in several other sections, including Section 8-I11 (moving
averages, sum of harmonics, autoregression, correlograms), Section 8-IV (Markov
process), Section 18 (queuing theory), Section 14 (ranges, queuing theory, theory of
storage), and Section 26-1I (stochastic programming models).

A system is an aggregation or assemblage of objects united by some form of regular
interaction or independence. The system is said to be dynamic if there is a process
taking place in it. If the process is considered probabilistic or stochastic, the system
is said to be stochastic. Otherwise, it is a deterministic system. Furthermore, the
system is called sequential if it consists of input, output, and some working fluid
(matter, energy, or information) known as throughput passing through the system.
The hydrologic cycle or a drainage basin is a sequential, dynamic system in which
water is a major throughput. Since a stochastic system is very complicated analyti-
cally, the hydrologic system has been generally treated as deterministic and its formula-
tion by deterministic models, such as instantaneous unit hydrographs, has been
proposed (Subsec. 14-IIT).

For detailed mathematical discussions on stochastic processes and on systems, see
Refs. 75-82.

F. Statistical Homogeneity

The nature of homogeneity in hydrologic processes can be examined statistically
with respect to time and space.

1. Time Homogeneity—Trend, Periodicity, and Persistence. A process or
time series may be considered time-homogeneous if the identical events under considera-
tion in the series are equally likely to occur at all times. Thus, purely random and
stationary processes or time series are time-homogeneous. In hydrology, strictly
time-homogeneous data are practically nonexistent because various kinds of variations
of natural or artificial causes exist in most hydrologic phenomena. However, such
variations, if appreciable, may be analyzed by various techniques.

Types of departure from true time homogeneity in hydrologic data may be roughly
classified as trend, periodicity, and persistence.

a. Trend. This is a unidirectional diminishing or increasing change in the average
value of a hydrologic variable, such as the trend of annual precipitation that is often
plainly visible on a plotted graph. A number of statistical techniques may be used
to determine the trend. A commonly used method is to analyze the trend by the
method of moving averages (Subsec. 8-III-II-B).

i NG i
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b. Periodicity. This represents a regular or oscillatory form of variations, such as
diurnal, seasonal, and secular changes that exist frequently in hydrologic phenomena.
Such variations are of nearly constant length and they may be assumed sinusoidal and
determined by harmonic analysis.

In the harmonic analysis a Fourier series is used to represent the time series z;,

Z3, . . . , zy of a total period of length T':
T/2 ] :
2 = 1540 + 2 (A,- cos 32‘3” + B; sin 3—67(31)5 (8-I-17)
ji=1

where A, is a constant, ¢ is the time, and the coefficients 4, and B; are amplitudes
being expressed by

N
2 3605t
= b z Y COS TJ (8-1-17a)
t=1
N,
2\ . 360
Bi=% Z wesin =2 (8-1-17b)
t=1

where ¥, is the deviation of z; from the arithmetic straight-line trend for the period
selected, with j = 1, 2, . . . , and N being the number of years of record used in the
analysis. The sum of the squared amplitudes is

R2 = A;? + B2 (8-I-17¢)

If no periodic fluctuations are present in the series; that is, if the series is a pure-
random (nonautocorrelated) series of N terms having a normal distribution, the
mean-squared amplitude of the series is

442

Rn?
N

(8-I-174)
where o2 is the variance of the series ;.
If the series has periodic fluctuations, three tests for periodicity are available [83-85]:
(1) Schuster Test. According to Schuster [86], the probability P, in per cent that
the squared amplitude R;? is k times the mean-squared amplitude R..? is

P, st (8-1-18)
h R TR TR (8-1-184)
W ere = If—mz = —inr, -1-15a

The value of R;? for a given series can be tested to see if it differs from R,? derived
from a pure-random series. It is apparent that the higher the probability P, the more
likely the series is pure-random since the hypothesis being tested is that the series is
pure-random. Generally P, = 10 per cent may be taken as the level of significance.
The corresponding value of k = 2.303. Thus, R,® = 2.303R,? = 9.212s%/N.
Computing this value and substituting it in Eqgs. (8-I-17a to ¢), the value of j can be
computed. The possible hidden periodicity is equal to 7'/j.

(2) Walker Test. According to Walker [87], the probability that at least one
squared amplitude R,? will be k times R,,? is

P,=1— (1 — ek (8-1-19)

which may be used for a periodicity test as in the Schuster test.
(3) Fisher Test. Let R;?be the largest of the squared amplitudes B;2. According
to Fisher [88], the probability P, that R,?/2s?, where s? is the unbiased estimate of

I
g
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¢, is greater than a given value g is

m
Pr= ) (=1 (1) a - ig-t (8-1-20)
i=0 :
where m is the greatest integer less than 1/g, and j = 1, 2, . . . is the number of

periods. This probability may be used for a periodicity test as in the Schuster test.

It must be noted that the above tests are based on normal distribution of the
deviations and they apply only to strict periodicity and to nonautocorrelated data.
Therefore, before using these tests, the effect of persistence or autocorrelation should
be eliminated and the deviations be known as reasonably normally distributed.

Periodicity of secular nature is a matter of controversy [89]. Although the 11-year
sunspot cycle is generally believed to have effect of various degrees upon hydrologic
phenomena through the corresponding variations in solar radiant energy, statistical
tests of possible astronomical effects on hydrologic phenomena have failed to show
any statistical significance. Huntington [90] believed that very long secular variations
are really not truly cyclic and therefore described them as pulsations.

Because of the seasonal effect on most hydrologic phenomena, water year instead of
calendar year is usually adopted for the analysis of annual data. The water year will
vary somewhat materially with the climatic conditions in various parts of the world.
Water year usually starts when the ground and surface storage are both reduced to a
minimum. The U.S. Geological Survey arranges the runoff data for a water year
from October 1 to September 30. In England, the water year from September 1 to
August 31 is sometimes used. Brakensiek [91] suggested that an optimum water
year for tabulating water yield data can be determined by correlation analysis.

c. Persistence. This means that the successive members of a time series are linked
among themselves in some persistent manner, resulting in non-pure-randomness.
Due to meteorological and climatic causes, it has been found that wet years tend to
occur in groups and dry years to occur together likewise. - This tendency in grouping
having the carryover effect of the immediate antecedent hydrologic conditions is the
indication of the presence of persistence in hydrologic phenomena.

Since the carryover effect plays a significant part in hydrologic phenomena, it and
hence the persistence are inversely related to the time interval between observations of
such effects. When the time interval is shorter, the carryover effect or the persistence
becomes more pronounced. As the effect of persistence exists, the degree of pure-
randomness of the hydrologic data reduces. The magnitude of persistence may be
determined by serial correlation analysis and correlograms (Subsec. 8-IV-II). It has
been found that the magnitude depends on the type of hydrologic data; for example,
it is higher in streamflows than in rainfalls.

Leopold [92] has described the nature of persistence with reference to probability
analysis applied to a water-supply problem. He pointed out that Hurst [93] analyzed
the longest record of river stage in the world (1,050 years of recorded stage of the Nile
at the Roda gage) and obtained the evidence that the tendency for wet years to occur
together and dry years together increased variability of means of various periods.
In other words, the variability of groups of streamflows in their natural order of
occurrence is actually larger than if the same flows occurred in random sequence.
To illustrate this point, Leopold prepared Fig. 8-1-2 to show the variability of mean
values of streamflow for records of various lengths. The dashed curve was plotted
with grouped data taken from some longest streamflow records in the United States
and Europe. If the annual streamflows were to occur in random sequence, the vari-
ability of means of groups would decrease inversely as the square root of the number
of years comprising the group. Thus, the means of 100-year groups would be 1/ /100
or 1/10 as variable as 1-year values. The solid curve represents this random-sequence
data. The difference between the dashed and solid curves represents the effect of
persistence.



PROBABILITY DISTRIBUTIONS 8-13

100
@
£ \\ |
Diz ; :
€9 Weight of evidence of all long-term
iy \ N /_records of streamflow, United
gg 60 \ \< States and Europe
£T \\
w
£s L
£2.40 1
€z \ R :
£ \ i e
= 20 N
g ‘/7\ B
8«
2% s |
S Randoi-n sequelnce | Pl
0

| 2 5 10 20 50 100 200
Length of record,in years

Fie. 8-1-2. Variability of mean values of streamflow for various lengths. (Leopold [92].)

2. Space Homogeneity. Statistical meteorological homogeneity, or statistical
hydrologic homogeneity, in space implies that the occurrences of a particular meteoro-
logical, or hydrologic, event at all places within a so-called statistically homogeneous
area are equally likely within a tolerable statistical difference. Because of the changes
in geographical environment, statistically homogeneous areas are limited and can be
delineated by statistical regional analysis (Subsec. IV-J).

ITII. PROBABILITY DISTRIBUTIONS

There are many probability distributions that have been found to be useful for
hydrologic frequency analysis. Theoretical derivations and detailed discussions of
such distributions can be found in many standard textbooks on statistics [73-75,
94-95].

A. Rectangular Distribution

The rectangular distribution is a uniform distribution of a continuous variable X
between two constants @ and b. The probability density of this distribution is

p) =0 forz < a
p(x) = % fora < z:<b (8-I-21)
i/
and p(x) =0 forb <z

The statistical parameters are:- Mean = (b + a)/2; and variance = (b — a)2/12,

B. Binomial Distribution

This is one of the most commonly used discrete distributions. It represents the
distribution of probabilities in Bernoulli trials, say tossing a coin. The probability
density is

p() = CNpzoi== (8-1-22)

where p is the probability of occurrence of an event, for example, a success in tossing
a coin; C.¥ is the number of combinations of N things taken z at a time; ¢ is the prob-
ability of failure or 1 — p; N is the total number of trials ; and z is the variate or the
number of successful trials.

The statistical parameters are: Mean = pN; standard deviation, ¢ = \/pgN; and

NLs
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skewness, « = u3/0® = (@ — p)/\/pgN, where u; is the third moment about the
mean. When p = ¢, the distribution is symmetrical.

In a binomial distribution, the events or trials can be classified into only two cata-
gories: success and failure, yes and no, rainy and clear, etc. The probabilities p 4nd ¢
remain constant from one trial to another, i.e., the events are independent to each
other.

C. Poisson Distribution

If N is very large and p is very small so that pN = m is a positive number, then

mre~m
z!

p(z) = (8-1-23)
gives a close approximation to binomial probabilities when m is small. A distribution
with this probability density is called the Poisson distribution and is generally referred
to as the law of small numbers. It is most useful when neither N nor p is known but
their product pN is given or can be estimated.

The statistical parameters are: Mean = m; standard deviation = m; and skewness

=1/\/m.

D. Normal Distribution

This is a symmetrical, bell-shaped, continuous distribution, theoretically i‘epresent—
ing the distribution of accidental errors about their mean, or the so-called Gaussian
law of errors. The probability density is

pla) = —1— e~tewinat (8-1-24)
o\ 2r
where z is the variate, u is the mean value of the variate, and ¢ is the standard devia-
tion. In this distribution, the mean, mode, and median are the same. The total
area under the distribution is equal to 1.0. The cumulative probability of a value
being equal to or less than z is =

P i) e i f T et gy (8-1-25)

o\ 2r

This represents the area under the curve between the variates of — « and . Areas
for various values of x have been calculated by statisticians, and tables for such
areas are available in many textbooks and handbooks on statistics.

E. Gamma Distribution

The probability density of this distribution is

xae—z/b (8_1 26

p(x) = m -26)
with b>0,a> —1 forz =0
and p) =0 for.z/<.0

where a and b are constant and I'(a + 1) = a!is a gamma function. The cumulative
probability being equal to or less than z (< «) is known as the incomplete gamma
Sfunction.

The statistical parameters are: Mean = b(a + 1); and variance = b%*(a + 1).

F. Pearson Distributions

Karl Pearson [96] has derived a series of probability functions to fit virtually any
distribution. Although these functions have only slight theoretical basis, they have
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been used widely in practical statistical works to define the shape of many distribution
curves. The general and basic equation to define the probability density of a Pearson
distribution is

z
(a+z)/(bo+biz+box2)d
P e/_” a+z)/(bo+bix+bax?)dz (8-1.27)

where a, bo, b1, and b, are constants. The criteria for determining types of distribution
are 31, B2, and « being defined as follows:

2

B = % (8-1-28)
B = 2% (8-1-29)
po? '
and 131(132 + 3)2 (8_1_30)

 4(4B: — 3B1)(28: — 381 — 6)

where us, us, and pq are the second, third, and fourth moments about the mean (Shep-
pard’s corrections may be made if necessary).

With 81 = 0, B2 = 3, and « = 0, the resulting Pearson distribution is identical with
the normal distribution. Types I and III distributions are often used in the hydrologic
frequency analysis.

1. Type I Distribution. For Type I, x < 0. This is a skew distribution with
limited range in both directions, usually bell-shaped but may be J-shaped or V-shaped.
Its probability density is

p(@) = po (1 Jri)ml (1 ) (8-1-31)
ax az
with mi/a; = ms/a» and the origin at the mode. The values of m; and m; are given by
1 VB ] :
=—|r—24+ 2) 8-1-3
My OT Ms 2[r 2 +r(r + )2(a1+a2) ( la)

When p; is positive, m, is the positive root and m, is the negative root; and vice versa in
signs. The other values are

6B B o )

4 (8-1-31b)
6 4 381 — 28;
a @ + as = 35 Vulbi + 2 + 160 + 1] N o
an
s N MM ™2 T'(mi + me + 2) (8-I—31d)

a; + as (my + mg)m+me T'(my + 1)T(me + 1)

where N is the total frequency.
The statistical parameters are: Mean = mode — (us/2u2)[(r 4+ 2)/(r — 2)]; stand-
ard deviation = \/ju,; and Pearson’s skewness = (\/B81/2)[(r + 2)/(r — 2)]. ;
2. Type III Distribution. For Type III, xk = » or 28, = 38; + 6. This is a
skew distribution with limited range in the left direction, usually bell-shaped but may
be J-shaped. Its probability density with the origin at the mode is

| p(@) = po (1 + Y ¢reme (8-1-32)
where c=——1 (8-1-32a)
: 31
a=CSk : (8-1-32b)
2 po
N cc+l
=L 8-1-32¢
Po a eT'(c +1) ( )
L o L. et bl » - LS
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The statistical parameters are: Mean = mode — us/2uz; standard deviation = /ps;
and Pearson’s skewness = \/153—1/2.

G. Extremal Distributions

Fréchet (on Type II) in 1927 [97] and Fisher and Tippett (on Types I and III) in
1928 [98] independently studied the distribution of extreme values and found that the
distribution of the N largest (or the N smallest) values, each of which values is selected
from one of m values contained in each of N samples, approaching a limiting (asymp-
totic) form as m is increased indefinitely. The type of the limiting form depends on the
type of the initial distribution of the Nm values. For three different types of initial
distribution, three asymptotic extremal distributions can be derived. A systematic
study of the three asymptotes to the corresponding types of initial distributions was
made by von Mises [99]. For detailed discussions on these distributions, see Refs.
100-102.

1. Type I Distribution. This distribution results from any initial distribution of
exponential type which converges to an exponential function as z increases. Examples
of such initial distributions are the normal, the chi-square, and the lognormal dis-
tributions. The probability density of Type I distribution is

p(d:) = %e—(u+:)lc*n'(°+‘)’” (8-1-33)

with — o <z < «», where z is the variate, and a and c are parameters. The cumula-
tive probability is

PX<igy = gttt (8-1-34)
By the method of moments, the parameters have been evaluated as

C— u (8-1-34a)

a =y

and e £ (8-1-34b)
™

where y = 0.57721 . . . a Euler’s constant, x is the mean, and o is the standard

deviation. The distribution has a constant coefficient of skewness equal to C; = 1.139.

2. Type II Distribution. This distribution results from an initial distribution
of Cauchy type which has no moments from a certain order and higher. The cumula-
tive probability is

P(X < z) = e t0in)t (8-I-35)

with 0 < 2 < «, where the parameter 6 is the expected largest value defined for a
sample of size n and increases with n, and k is an order of moments and independent
of n.

3. Type III Distribution. This distribution results from a type of initial dis-
tribution in which z is limited by z < e. The cumulative probability is

P(X < 1) = e-l@-olb-ol (8-1-36)

with — o <2 <e The parameter k is the order of the lowest derivative of the
probability function that does not vanish at z = e, and 6 is the expected largest value.

In application, Type I distribution is sometimes known as Gumbel distribution
since Gumbel [23] first applied it to flood frequency analysis. Type III is known as
Weibull distribution since Weibull [103-104] first applied it to the description of the
strength of brittle materials although- Gumbel [57] also applied it later to drought
frequency analysis.




PROCEDURE OF ANALYSIS 8-17

H. Logarithmically Transformed Distributions

Many probability distributions can be transformed by replacing the variate with
its logarithmic value. Three transformed distributions commonly used in hydrologic
studies are as follows:

1. Lognormal Distribution. This is a transformed normal distribution in which
the variate is replaced by its logarithmic value. This distribution represents the
so-called law of Galton because it was first studied by Galton [105] as early as 1875.
Its probability density is

p(z) = —L _ e-wmmptiey (8-I-37)

aye? \/ 2m

where y = In z, x is the variate, u, is the mean of y, and o, is the standard deviation
of y. This is a skew distribution of unlimited range in both directions.
Chow [15] has derived the statistical parameters for z as

u = ebvtol’i (8-1-37a)
o = u(e® — 1)% (8-1-37b)
a = (e39* — 3¢’ + 2)C,3 (8-1-37¢)
M = emv (8-1-37d)
]ill = 0?2 (8-1-37¢)
C, = (eo* — 1) (8-1-37f)
C,=3C,+Cg (8-I-37g)

where u is the mean, o is the standard deviation, C; is the coefficient of skewness, M is
the median, and C, is the coefficient of variation. Chow [15] has also shown that
the Type I extremal distribution is essentially a special case of the lognormal distribu-
tion when C, = 0.364 and C; = 1.139. For other discussions, see Refs. 106-109.

2. Logextremal Distributions. Let z be replaced by y in Eq. (8-I-34) and then
equate Eq. (8-I-34) to Eq. (8-I-35) and to Eq. (8-1-36). It can be found that for
Type II extremal distribution, y is a linear function of In «, and for Type III extremal
distribution, y is a linear function of In (z — ¢). In other words, if the variate z in
Type I distribution is replaced by a linear function of the logarithm of z and z — e,
the resulting logarithmically transformed distributions become Type II and Type II1
distributions respectively.

3. Truncated Lognormal Distributions. Slade [22] introduced two truncated
and shifted logarithmically transformed normal distributions for hydrologic frequency
analysis. One is called the partly bounded distribution which has an unlimited range
only in the positive direction of the variate. Its probability density is

p(z) = ae~cln d@=+b)]? (8-1-38)

with —b < 2 < «, where a, b, ¢, and d are parameters which can be derived from the
first three statistical moments.

The other is called the fotally bounded distribution which has the maximum and
minimum limits of fluctuations from the mean. Its probability density is

p(x) = age~ve*(in dlz+b) /(=) (8-1-39)

with —b < 2z < g, where the parameters a, p, ¢, and d are determined empirically.

IV. PROCEDURE OF ANALYSIS

Frequency analysis of hydrologic data starts with the treatment of Taw h_ydrologic
data and finally determines the frequency or probability of a hydrologic deS{gn value.
Since the time sequence of hydrologic phenomena is not considered primarily in this
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section, probabilistic frequency analysis is mainly discussed here. In such analyses,
a probability distribution is assumed as a mathematical model to which the hydrologic
frequency data are to be fitted without considering the sequence of occurrence of the
data. See Subsec. II-E. :

.A. Treatment of Raw Data

1. Data Sampling. Large masses of hydrologic data are unwieldy and uneco-
nomical to analyze and their population is infinite or nearly infinite in size. For the
use in analysis, the data must be sampled. For probabilistic frequency analysis, it
is required that samples be pure-random. In other words, they should be unbiased,
independent, and homogeneous.

A sample for which the sampling procedure is entirely by chance is called an unbi-
ased, or a random, sample. In order to prevent the sample’s being biased, the sample
must be as representative as possible of the total population. In the collection of
rainfall data in a drainage basin, for example, the stations should be so located that
a large part of the basin would be covered and that various types of basin conditions
would be represented. Such a representative sample is called a stratified sample, which
is the opposite of a spot sample that is taken only from one small area or class of
population.

Dependence of data may be referred to on either time or space. 7'ime dependence
is the major cause for non-pure-randomness of the data. For example, two successive
floods occurring very closely may result in a high degree of dependence as the storm
producing the first flood may effectively affect the meteorological condition that pro-
duces the second flood. Space dependence may be a major reason to produce unstrati-
fied data. For example, two rainfall stations placed closely together will produce
practically identical data and should be considered only as one station in computing
mean rainfall. :

Lack of homogeneity means that the samples are taken from two different popula-
tions. For example, temperatures taken under the sun should not be averaged with
those taken in the shade if the two conditions are considered as constituting different
populations in the analysis.

2. Observation Errors. Nowadays vast amounts of hydrologic data are being
collected. The basic form of such data is generally a continuous record in time, which
is too bulky for publication. Usually, only selected or processed data are published.

Measurement and publication often involve instrumental and human errors. Such
errors may be considered of two kinds, namely accidental and systematic érrors,
although it is sometimes difficult to distinguish between them and many errors are a
combination of the two kinds. Accidental errors are usually due to the observer and
sometimes due to the uncertain nature of the measuring instrument. Such errors
may be considered random errors; they are disordered in their incidence and variable
in magnitude, positive and negative values occurring in repeated measurements in no
ascertainable sequence. On the other hand, systematic errors may arise from the
observer or the instrument. Such errors are not random; they may be constant and
create a trend, or vary in some regular way and produce periodicity.

3. Inherent Defectiveness. Major defectiveness of hydrologic data, such as non-
pure-randomness, nonstationarity, missing data, etc., should be investigated. If they
affect measurably the basic assumptions required in probabilistic frequency analysis,
the raw data should be adjusted accordingly by various methods, such as serial correla-
tion analysis for persistence, moving averages for trend, and Fourier or harmonic
analysis for periodicity (Subsec. II-F-1). Missing data may sometimes be estimated
by regional analysis by correlation with other hydrologic data in the neighborhood
(Subsec. 9-V).

Statistical properties of hydrologic phenomena may also depend on inferences
derived from long-term nonhydrologic natural data. Examples of such data which
may possibly be used for this purpose include widths of tree rings, pattern of fossil

~ pollen, distribution of clay varves, fluctuations in levels of closed lakes, glacial move-
“ment, and very long-range historical records of extraterrestrial phenomena. These

B e b
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nonhydrologic phenomena contain the intrinsic record of the nature of non-pure-
randomness, nonstationarity, and other characteristics of time-series events. They
may be used to improve the quality of hydrologic data through statistical inferences.
However, they are available only in limited number. Furthermore, their use in
statistical inferences requires the understanding of the processes involved in these
natural phenomena and the correct interpretation of the results obtained from the
inferences.

It may be noted that hydrologic phenomena seldom completely satisfy the require-
ments of the statistical theory. Before the raw data are used for frequency analysis,
they should be examined for possible observation errors and inherent defectiveness.
If such errors and defectiveness are appreciable, they should be analyzed and corrected
before the frequency analysis can be suitably applied.

B. Selection of Data Series

The available hydrologic data are generally presented in chronological order. Fig-
ure 8-1-3 exhibits a hypothetical set of such data for a certain period of observation,
say 20 years as shown in the figure. The magnitude of data is expressed in an arbi-
trary unit. Since all available data are shown, they constitute a complete-duration
series.

100 — (a) Original Data
N= 20yrs

(b) Annual Maxima

Magnitude

Rl R B R

(c) Annual Exceedances

It shaeliobbdrdl 1l abidachal sbidl vl il T Faded i

Time in Years

F1c. 8-1I-3. Hydrologic data arranged in the order of occurrence.
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Experience has shown that many of the original data have practically no significance
in the analysis because the hydrologic design of a project is usually governed by a few
critical conditions only. Thus, except sometimes in a few cases such as in the analysis
by duration curves and mass curves, the complete-duration series is not always used.
In order to save labor and time in the publication and analysis of the data, the data of
insignificant magnitude should be excluded. For this purpose, two types of data
are generally selected from the complete-duration series: the partial-duration series
and the extreme-value series.

The partial-duration series, or partial series, is a series of data which are so selected
that their magnitude is greater than a certain base value. If the base value is selected
so that the number of values in the series is equal to the number of the record, the
series is called annual exceedance series as shown in Fig. 8-1-3c.

The extreme-value series includes the largest or smallest values with each value
selected from an equal time interval in the record. The time interval is usually taken
as one water year and the series so selected is the annual series. For largest annual
values, it is an annual mazimum series as shown in Fig. 8-1-3b. For smallest annual
values, it is an annual minimum series. When the time interval decreases, the depend-
ence between observations and the number of selected values increase. If the time
interval is less than one year, the seasonal variation will further introduce nonhomoge-
neity to the data. However, homogeneity of the data may be maintained at least
for practical purposes if the data are selected only from a particular season, month, or
other definite duration within a year [48]. For example, summer storms and spring
floods can be selected to form their own independent series.

For clarity, the classification of hydrologic data series may be shown as follows:

Hydrologiti data series

[ T |
Complete-duration  Partial-duration Extreme-value
series series series
Annual Nonannual 4 2
exceedance  exceedance Muxn;r::rir;svolue Mmug::msvulue

series series-
Annual Nonannual  Annual Nonannual
maximum maximum  minimum  minimum

series series series series

Annual series

The annual maximum values and the annual exceedance values of the hypothetical
data in Fig. 8-I-3a are arranged graphically in Fig. 8-I-4 in the order of magnitude.
The figure shows that many annual exceedances surpass the annual maxima in magni-
tude. In this particular example, only five of the twenty values are the same in both
annual exceedance and annual maximum series. Figure 8-I-3a also shows that the
second largest value in several years outranks many annual maxima in magnitude.
Thus, in the annual maximum series for which only the annual maxima are selected
these second largest values are omitted, resulting in the neglect of their effect in the
analysis. On the other hand, in the annual exceedance series where several values
which occurred close together may be included in the same year, the selected data
may be less independent than the annual maxima because one hydrologic event can
affect another which follows very closely after, e.g., one flood and one storm may
influence the meteorological condition for the subsequent ones.

From the logical point of view, the selection of hydrologic data in designing a struc-
ture may be judged by the type of structure or project. The annual exceedances or
the partial-duration series should be used if the second largest values in the year would
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affect the design. For instance, the damage to bridge foundations caused by flooding
sometimes results from the repetition of flood occurrence rather than from a single
peak flow. A culvert subject to flood damage or destruction may be rapidly and
economically repaired or restored and then soon again exposed to future damage.
Similarly, in highway drainage, the loss due to traffic interruption as a result of flooding
will be weighed by the number of flood peaks and the extent of flooding which are
largely caused by associated peak flows. In other cases where the design is governed
by the most critical condition, such as the design of a spillway, the annual maxima
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F1c. 8-I-4. Hydrologic data arranged in the order of magnitude.

should be used. For practical purposes, the partial-duration series and the annual
maximum series do not differ much except in the values of low magnitude. Usually,
both series are used in an analysis for comparison purposes.

The relationship between the probabilities of the partial-duration series (or. the
annual exceedance series) and the annual maximum series has been investigated by
Langbein [37] and a corresponding theoretical relationship was derived by Chow
[62, 110] as follows:

Let Pg be the probability of a variate in the partial-duration series (or the annual
exceedance series) being equal to or greater than x, and let m be the average number of
events per year or mN be the total number of events in N years of record. Then
| Pg/m is the probability of an event being equal to z or greater, and 1 — Pg/m is the
] probability of an event being less than z. Thus the probability of an event of magni-

o N i . :
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tude z becoming a maximum of the m eventsin a yearis (1 — Pg/m)™. This probabil-
ity approaches e~?# when Pg is small compared with m, which is true for most cases.
Therefore, the probability Py of an annual maximum of magnitude = being equaled
or exceeded is equal to

! Pu

1isrigida (8-1-40)
or Pg

—In (1 — Py) (8-I-41)
It can be shown that Py = Py as both Py and Pz become large.

C. Recurrence Interval

The primary objective of the frequency analysis of hydrologic data is to determine
the recurrence interval of the hydrologic event of a given magnitude z. The average
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Fi1c. 8-I-5. Relationship between recurrence intervals 7y and 7T'g.

interval of time within which the magnitude y of the event will be equaled or exceeded
once is known as recurrence interval, return period, or simple frequency, to be designated
by T.
If a hydrologic event equal to or greater than z occurs once in 7" years, the probabil-
ity P(X > z) is equal to 1 in T cases, or
d
7
. 1 ot 1
P(X 2> ) D =0 P <0%)
If Ts and Tz are the recurrence intervals of the annual maximum series and the
partial-duration series (or the annual exceedance series) respectively, and Py and Pg
are their corresponding probabilities of being equal to and greater than the magnitude
z, Eq. (8-1-42) gives Py = 1/Ty and Pg = 1/Tg. Substituting these expressions of

Py and Pgin Eq. (8-1-40) and simplifying, the relationship between the two recurrence
intervals is

PX >2) = (8-1-42)

Hence, i

(8-1-43)

1
o Byt In (T =)

Tg (8-I-44)
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This relationship is plotted as shown in Fig. 8-I-5. Langbein [37] has plotted a num-
ber of actual cases which were found to be very close to this theoretical curve. It
can be shown from this curve that a difference between Py and Py is equal to about
10 per cent when Pg is 5 years, and the difference becomes about 5 per cent when Py is
10 years. In ordinary hydrologic analysis, a 5 per cent difference may be considered
tolerable. Therefore, it may be concluded that the two recurrence intervals are
practically identical for recurrence intervals greater than 10 years.

It should be noted that the recurrence interval as usually defined is a mean time
interval based on the distribution of the variate z; it is not the actual time interval
between two events of equal magnitude x. Thom [111] has studied the distribution
of the actual time interval (assuming a Poisson distribution) instead of the distribution
of the magnitude z. He found that the relationship between the recurrence interval 7'
(i.e., the mean time interval) and the actual time interval distribution can be expressed
as

L

ok o P(r) e

where P(r) is the probability that the actual time interval = is to be equaled or exceeded.

D. Frequency Analysis Using Frequency Factors

1. General Equation for Hydrologic Frequency Analysis. The variate z of a
random hydrologic series may be represented by the mean # ~ u plus the departure
Az of the variate from the mean, or

x =3I+ Az (8-1-46)

The departure Az depends on the dispersion characteristic of the distribution of
and on the recurrence interval 7 and other statistical parameters defining the distribu-
tion. Thus, the departure may be assumed equal to the product of the standard
deviation o and a frequency factor K, i.e., Ar = ¢K. The frequency factor is a function
of the recurrence interval and the type of probability distribution to be used in the
analysis. Equation (8-I-46) may therefore be expressed as

S (8-1-47)
=14+ C,K (8-1-48)

or

88 8

where C, = ¢/Z. The above equation was proposed by Chow [112] as the general
equation for hydrologic frequency analysis. This equation is applicable to many proba-
bility distributions proposed for use in hydrologic frequency analysis. For a proposed
distribution a relationship can be determined between the frequency factor and the
corresponding recurrence interval. This relationship can be expressed in mathe-
matical terms, by tables, or by curves called K-T' curves. In applying the general
equation, the statistical parameters required in the proposed distribution are first
computed from the random hydrologic data series. For a given recurrence interval,
the frequency factor can be determined from the K-7 relationship for the proposed
distribution and the magnitude z for the recurrence interval can be computed by Eq.
(8-1-47) or (8-I-48), using the corresponding frequency factor and the computed
statistical parameters. :

2. The K-T' Relationship. Based on the observations of many streams, Fuller
[10] derived the earliest empirical formula for the frequency analysis of annual maxi-
mum daily flow as

x=Z%(1 4+ 08log T) (8-1-49)

Comparing this formula with Eq. (8-1-48), the frequency factor can be easily found as

sk %§1og T (8-1-50)
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which is a function of C, and 7. The value of C, varies from 0.1 to 2.0, having an
average of 0.50. The Fuller formula is actually based on an empirical statisticai
distribution and thus the K-7 relationship so derived is also empirical. Since Fuller's
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Fic. 8-I-6. K-T curves for Pearson distributions. (a) Pearson Type I distribution.
(b) Pearson Type III distribution.

time, many methods using theoretical distributions have been proposed. The K-T
relationships for some important theoretical distributions are discussed below:

a. Normal Distribution. Taking & = u, the frequency factor can be expressed from
Eq. (8-I-47) as

R (8-I-51)

o +

Substituting this expression in Eq. (8-1-25),

K
P(X <2) = \/#2_ / e K2 K (8-1-52)
T — 0

- ¥y
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Values of P(X < z) for various values of K can be found from normal probability
tables in many textbooks and handbooks on statistics. The corresponding values of
T can be obtained from Eq. (8-I1-43).

b. Pearson Distributions. Foster [17] proposed a method in which the Pearson
Type I and Type III distributions are used. From Foster’s derivation, the frequency
factor of these distributions can be shown by K-T curves in Fig. 8-1-6. Foster sug-
gested that the coefficient of skewness computed by Eq. (8-I-11) should be multiplied
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Fi1a. 8-1-7. K-T curves for Type I extremal distributions.

by 1 4 8.5/N for Type I distribution and by 1 + 6/N for Type III distribution in
order to adjust the influence due to the length of hydrologic records.

c. Extremal Distribution. The frequency factor for the Type I extremal distribution
can be derived from Eq. (8-I-33) in a manner similar to that described above for the
normal distribution. It has been given by Chow [52, 112] as

o, [7 g P In( s 1)] (8-1-53)

T /i3

which is plotted as the heavy line in Fig. 8-I-7. Potter [32] studied 370 Type I
extremal distributions for maximum rainfall intensities of various durations, monthly
and annual rainfall amounts, and peak rates of surface runoff. The result of his
study can be plotted in K-7 curves as shown in Fig. 8-1-7. It can be seen that the K-7
relationship so obtained depends on the number of years of record, N. These curves
are shown by thin lines with the dashed portions extrapolated. As N increases, the
K-T relationship approaches the theoretical relationship which is derived for the
population. The curve for N = 100 years is practically identical with the theoretical
curve.

When z = %, Eq. (8-I-48) gives K = 0 and thus Eq. (8-1-53) results in 7 = 2.33
years. Thisis the recurrence interval of the mean of the Type I extremal distribution.
It is taken by U.S. Geological Survey as the recurrence interval of a mean annual flood.

d. Lognormal Distribution. Substituting =z = ev, Z ~ u by Eq. (8-I-37a), and ¢ by
Eq. (8-I-37b) in Eq. (8-I-47), Chow [15, 106] has derived the frequency factor for the
lognormal distribution as

~

eovKy—o,t2 — ]

=T B T -1-54
(eo® — 1)%2 g

where K, = (y — §)/o, and can be expressed in a form similar to Eq. (8-I-47) as
y =7+ o, K, (8-1-55)
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Equation (8-I-37) shows that y is normally distributed while its antilogarithm z is
lognormally distributed. For a given recurrence interval 7', or probability P(X > z)
or P(X < z), the value of K, can be computed in a manner similar to that described
above for the normal distribution. When K, is known, the value of K can be com-
puted by Eq. (8-I-54) for any given value of o,. The value of o, and the corresponding

Table 8-I-1. Frequency Factors for Lognormal Distribution

Probability in per cent

equal to or greater than the given variate Cormge
Proba- 5
Cs | bility Spi‘;’; 5

gbmeant Joo 1 98 | 80| 50--|~20— 5 - l-ed-Heor-|-i2¢

= 5 = = e Els iy T =

0 50.0 2.33 | '1.65 | 0.84 0 0.84 | 1.64 | 2.33 { 3.09 | 3.72 0
01 49.3 2.25 | 1.62 (0.8 (0.02 | 0.8 | 1.67 | 2.40 |- 3.22 3.95| 0.033
0.2 48.7 218 1'1.69 | 0.85 0.04 |1 0.83 | E701=2.47 |13.39 4.18 | 0.067
0.3 48.0 2. 11 41,561 0.85 1 0.06| 0.82 |"1.72 | 2:65=1:3.96 | 4.42 0. 160
0.4 47.3 2.04 111.53 |10.85 | 0.07 | 0.81 [ 175 [.-2.62 [ 3792 | 14.70 | 0,136
0.5| 46.7 1.98|1.49| 0.8 | 0.09 | 0.80 | 1.77 | 2.70 | 3.88 | 4.96| 0.166
0.6 46.1 1.91 | 1.46 | 0.85 | 0.10 | 0.79 | 1.79 | 2.77 | 4.05 | 5.24| 0.197
0.7 45.5 1:86 |1 1.43 |10.85 | 0:11 [ 0.78 | 1.8ki] 2.84 |14.21 | {5.562 [X0.230
0.8 44.9 1.79 | 1.40 | 0.84 | 0.13 | 0.77 {-1.82 |- 2.90 | 4.37 | 5.81 | 0.262
0.9 | 44.2 1.74{1.3710.84 | 0.14 |1 0.76 | 1.84 | 2.97 | 4.55 | 6.11 | 0.292
150 . 43.7 1.68 | 1.34 | 0.84 | 0:356°) 0.76 | 1.85 | 3.03 | 4.72 | 6.40| 0.324
o2l 243 9 1,63 1,31 1°0.831-0.16 | 0.73{ 1.88:§3.09 | 4.87 | 6771:| 0:351
L2849 7 1ESRFIOGEIGTRDUIL0 179K 0. 72 43TI8T +°3) 15" 17504 | 7.02 | 0.381
1.3 1 :42.2 12544 126100 1825 018 0. 7171 1.88 | 3.91 1 519057 .31 | 05 409
Noddisdl: 7 149-41.23 ] 0.81 |-0.19 |10.69:|: L:88 |-3.26:|:5.35:| 7.62-0.436
1.5 41.3 1,45 4521 /081 ]| 0.20:0.68 -1.89:| :3.31 | 5.51:|:-7:92 |.0.:462
1.6 40.8 1.41 |;1.18 | 0.80. | 0.21:|,0.67 | 1.89 3.36: | .5.66.| 8.26.| 0.490
1: 7 40 .4 1.38 | 1.16.} 0.79.] 0.22 | 0.65 | 1.89 1-3.40. 1:5.80 :8.58 | 0,517
1.8 40.0 1.34 | 1.14 | 0.78 | 0.22 | 0.64 | 1.89 | 3.44 | 5.96 | 8.88| 0.544
1.9| 39.6 1,311 -17¥28150 987 0-23 | ~0.683 '[=1.89 1 3.48 | 6.10°-9.20'| [0.570
2.0 [ =89.2 1,281 11001 0477 0024 | 0.61;x1:80:13.52 | 6.25 | 9:51 | 0.596
2.111.938.8 1.25 | 1.08 | 0.76 | 0.24 | 0.60 | 1.89 | 3.55 | 6.39 | 9.79| 0.620
2.2 88.4 1.22 11,0651 076/ 0.25 | 0.59 [«1.89 1 3.59 | 6.51 |10.12| 0.643
2.3 iR 1.20 | 1,04 10,75 |0.25 | 0.58 | 1.88 | 3.62 | 6.65 |10.43 |.0.667
2.4 |- - 3T T 7 8029090174 110%26 20557 [P 1 881 Y3 856577 10,72 [10.691
2.5 | 37.4 1.15|1.00 | 0.74 | 0.26 | 0.56 | 1.88 | 3.67 | 6.90 [10.95| 0.713
2061 87k 15.12. 110199 49073 | 10.267 | 103654 LI87 }i370|571023111 ,25![103734
2.7 |:.:86:8 1510 110,97 |.0.72 |20:27 [r0.54 2287} 3. 72 {17:13 |1412:55:}::0 755
2.8 .36.6 1:08.1.0:96 |:0.,72 |-0.271:0.53 | 1.86{.3:74 .} 7.25 | 11.80 | 0,776
29} .36.3 1.06 | 0.95:1 0,71 | 0.27 | 0:52:..1.86:|.8:.76.|.7:36.:12.10-| 0:796
3.0 36.0 1.04 1 0.9310.71 | 0.28 |-0.561 | 1.85 ] 3.78 | 7.47 |12.36| 0.818
S 21855 1.01 | 0.90 | 0.69 | 0.28 | 0.49 | 1.84 | 3.81 | 7.65 | 12.85( 0.857
S 11851 0.98 1 0.88 |0.68|0.29 |0.47 | 1.83 | 3.84 | 7.84 |13.36| 0.895
3.6 34.7 0.95(0.86 | 0.67 | 0.29 | 0.46 | 1.81 | 3.87 | 8.00 | 13.83 | 0.930
3.8 | 34.2 0.92 ( 0.84 | 0.66 | 0.29 | 0.44 | 1.80 | 3.89 | 8.16 |14.23 | 0.966
4.0 33.9 0.90 | 0.82 | 0.65 | 0.29 | 0.42 | 1.78 | 3.91 | 8.30 |14.70 | 1.000
4.5 :33.0 0.84 ( 0.78 | 0.63 | 0.30 | 0.39 | 1.75 | 3.93 | 8.60 |15.62| 1.081
5:0.11.:82.3 0.80 (| 0.74 | 0.62 [ 0.30 | 0.37 | 1.71 | 3.95 | 8.86 | 16.45| 1.155

value of C, for an assigned vdlue of C, can be computed by means of Eqgs. (8-1-37b) and
(8-I-37g). Table 8-I-1 is a list of frequency factors so computed for assigned values
of C; and of various probabilities P(X > z). The table also lists the probabilities
at mean, which occur when K =0 or K, = g,/2. The recurrence interval 7' is
related to P(X > z) by Eq. (8-1-43). Thus, this table can be used to plot K-T" curves
using C, as the parameter.
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E. Probability Paper

The cumulative probability of a distribution may be represented graphically on a
probability paper which is designed for the distribution. On such paper the ordinate
usually represents the value of z in certain scale and the abscissa represents the proba-
bility P(X > z) or P(X < z), or the recurrence interval 7. The ordinate and
abscissa scales are so designed that the distribution plots as a straight line and the
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Fic. 8-I-8. Probability plotting of annual maxima of 10-min rainfall depth.

data to be fitted appear close to the straight line. The objective of using the probabil-
ity paper is to linearize the distribution so that the plotted data can be easily analyzed
for extrapolation or comparison purposes. In case of extrapolation, however, the
effect of sampling errors is often magnified. Therefore, hydrologists should be warned
against such practice if no consideration is paid to this effect in interpreting the extra-
polated information.
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Figure 8-I-1 shows the linearization of a distribution and the formation of a prob-

ability paper. The top diagram represents a frequency distribution and its probability

distribution of the data is shown in Fig. 8-I-3a. The center diagram represents the
cumulative probability curve plotted on a paper with rectangular scales. The lower
diagram shows the straight-line plotting of the cumulative probability curve on a
probability paper having a special scale for the probability designed for the given
distribution. It should be noted that in practice the probability is plotted as abscissa
rather than as ordinate as shown in the diagram.

Linearization of probability plotting has been proposed by many hydrologists since
Hazen [113] first suggested graphical linearization of the normal distribution in 1914.
By linearization, Powell [30] constructed the probability paper for Type I extremal
distribution proposed by Gumbel [23] for flood frequency analysis. Such paper may
be called extremal probability paper or Gumbel-Powell probability paper. A further
modification of the paper was made by Court [2]. Type III extremal distribution was
first used by Weibull [103—104] for stress analysis and later by Gumbel [57] for drought
frequency studies. Linearization for this distribution can be made on logextremal
probability paper or Weibull probability paper. On this paper, the ordinate has a
logarithmic scale for the variate and the abscissa has a special scale for Type I extremal
probability since Type III is essentially a logarithmically transformed Type I dis-
tribution. For linearization of the lognormal distribution, a lognormal probability
paper may be used. On this paper, the ordinate has the logarithmic scale for the
variate and the abscissa has a normal probability scale. On a probability paper it is
frequently necessary to provide a scale for recurrence interval along with the prob-
ability scale or sometimes to replace the latter.

Probability paper is generally designed for plotting hydrologic data of annual and
complete series, which possess a complete frequency distribution. For partial-dura-
tion series and annual exceedance series, which constitute only a “tail’”’ distribution,
the data are plotted on semilog paper where the ordinate has the rectangular scale for
the variate and the abscissa has the logarithmic scale for the recurrence interval.

In case a probability paper is not available, the probability scale may be constructed
by use of Eq. (8-I-47). For example, Fig. 8-I-8 shows an external probability paper
in which the scale for recurrence interval is constructed with reference to a rectangular
scale for frequency factor K. The recurrence intervals corresponding to various K
values on the rectangular scale can be computed by Eq. (8-1-53) and used to construct
the required scale. By means of Eq. (8-1-43), the probability scales can also be con-
structed. Similarly, probability paper of any distribution can be constructed if the
K-T relationship is known.

When a probability paper is available, it is possible to determine graphically the
frequency factor of the distribution for which the paper is constructed. Chow [107]
has proposed such a graphical method for the determination of frequency factors of a
lognormal distribution.

F. Plotting of Data

When a probability paper is chosen for use, the plotting of data on the paper
requires the knowledge of plotting positions. Numerous methods have been proposed
for the determination of plotting positions. Most of them are empirical. Table
8-1-2 lists some important plotting-position formulas but the list by no means shows
all the methods, since there are many other methods [26, 121-125] which cannot be
expressed by simple formulas.

Equation (8-I-56a) is believed to be the earliest formula for computing plotting
positions. Use of this formula is known as the California method, since it was first
employed to plot flow data of the California streams. Chow [52] has demonstrated
theoretically that this method is suitable for plotting annual exceedance series or
partial-duration series. However, this simple formula plots data at the edges of
group intervals and produces a probability of 100 per cent which cannot be plotted
on a probability paper. Thus, it was gradually replaced by the Hazen formula,
Eq. (8-I-56b), which plots data at the centers of group intervals, As the extremal
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distribution was later introduced to frequency analysis, the Weibull formula, Eq.
(8-I-56¢), was soon found to be very satisfactory. Chow [52] has shown that this
formula is theoretically suitable for plotting the annual maximum series. A com-
parative study of the Beard, Hazen, and Weibull methods by Benson [126] has also
revealed that, on the basis of theoretical sampling from extreme values and normal
distributions, the Weibull formula provides the estimates that are consistent with
experience. The Chegodayen formula, Eq. (8-I-56€), is an empirical formula commonly
used in the U.S.S.R., but Eq. (8-I-56¢) has been recommended as the All-Union
Standard 3999-48 in 1948 [116]. Equation (8-I-56¢) is a mathematical approximation
of Eq. (8-I-56d). In order to simplify the visual inspection of a plotted set of ordered
observations on extremal probability paper, Gringorten [120] further recommended
Eq. (8-I-56h) for computing plotting positions.

Table 8-1-2. Plotting-position Formulas

Name Date | Formula* for T or 1/P(X > x) Equation
;i i N
California [114] 1923 = (8-I-56a)
Hazen [14] 1930 224 (8-I-56b)
2m — 1
N
Weibull [103-104] 1939 11- . (8-I-56¢)
il
Beard [35] 1943 w (8-1-56d)1‘
N 4
Chegodayev [115-117] 1955 ﬁ (8-I-56¢)
4
Blom [118] 1958 i (8-I-56f)
m — 3§
i
Tukey [119] 1962 il (8-1-569)
S|
Gringorten [120] 1963 Ll (8-I-56h)
m — 0.44

* N = total number of items; m = order number of the items arranged in descending
magnitude, thus m = 1 for the largest item.

T This formula applies only to m = 1; other plotting positions are interpolated linearly
between this and the value of 0.5 for the median event. .

It may be noted that all methods of determining plotting positions give practically
the same results in the middle of a distribution but produce different positions near
the “tails” of the distribution. Thus, the choice of a plotting-position formula
becomes important. According to Benson [26], it is believed that only by use of a
method that gives the mathematically expected value of the probability does the
expected recurrence equal that experienced over a long period of time, and that com-
monly used methods may overestimate the benefit-cost ratios of proposed projects
if the methods do not furnish the mathematically expected value. Therefore, a
refined choice of a method depends on the acceptance of certain statistical principles
and on the aim of the analysis.

G. Curve Fitting

After the hydrologic data are plotted on a probability paper, a curve may be fitted
to the plotted points. The curve is a straight line if linearization of the distribution
is attempted. The straight line can be essentially represented by Eq. (8-1-47).
Curve fitting may be done either mathematically or graphically. In general, a
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mathematical curve fitting can be achieved by three methods: the method of moments,
the method of least squares, and the method of likelihood. Of course, the mathemati-
cal fitting does not necessarily require data plotting on a probability paper. By
graphical fitting, a straight line is simply drawn to fit the plotted data by eye-fit, and
this method is the simplest but involves human error.

Table 8-1-3. Frequency Analysis of Annual Maximum Values of 10-min
Duration Rainfall Depth at Chicago, Illinois

m @ z? Twr y=K y? zy Az
(¢)) (2) 3) 4) (5) (6) (7) ®)
1 111 1.2321 36.000 2.332 5.4382 2.5885 0.177
2| 0.96 0.9216 18.000 1.783 3.1791 17047 0.124
3| 0.94 0.8836 12.000 1.455 2.1170 1.3677 0.091
4| 0.92 0.8464 9.000 1.218 1.4835 1.1206 0.079
5| 0.88 0.7744 7.200 1.033 1.0671 0.9090 0.070
6| 0.80 0.6400 6.000 0.878 0.7709 0.7024 0.064
71 0.80 0.6400 5.143 0 745 0.5550 0.5960 0.059
8| 0.76 0.5776 4.500 0.627 0.3931 0.4765 0.056
9| 0.74 0.5476 4.000 0.522 0.2725 0.3863 0.052
10 0. 71 0.5041 3.600 0.425 0.1806 0.3018 0.050
110,70 0.4900 3.272 0.337 0.1136 0.2359 0.047
12| 0.68 0.4624 3.000 0.255 0.0650 0.1734 0.045
13| 0.68 0.4624 2.769 (15 rgrd 0.0313 0.1204 0.044
14| 0.66 0.4356 2.5671 0.102 0.0104 0.0673 0.042
15| 0.66 0.4356 2.400 0.032 0.0010 0.0211 0.041
16| 0.66 0.4356 2.250 | —0.035 0.0012 —0.0231 0.039
17 |£40:65 0.4225 2118 | —0.100 0.0100 —0.0650 0.038
18| 0.64 0.4096 2.000 | —0.164 0.0269 —0.1050 0.037
19| 0.64 0.4096 1.895 | —0.2256 0.0506 —0.1440 0.037
20| 0.63 0.3969 1.800 | —0.286 0.0818 —0.1802 0.036
21 0.62 0.3844 1.715 | —0.346 0.1197 —0.2145 0.035
221 0.61 0.3721 1.636 | —0.405 0.1640 —0.2471 0.035
23| .0.60 0.3600 1.565 | —0.464 0.2153 —0.2784 0.034
24| 0.58 0.3364 1.500 | —0.523 0.2735 —0.3033 0.034
26 | 0.567 0.3249 1.440 | —0.582 0.3387 —0.3317 0.033
26| ~0.57 0.3249 1.385 | —0.643 0.4134 —0.3665 0.033
27| 0.53 0.2809 1.833 | '—0.704 0.4956 —0.3731 0.033
28| 0.52 0.2704 1.285 | —0.768 0.5898 —0.3994 0.033
29| 0.49 0.1401 1.242 | —0.834 0.6956 —0.4087 0.033
30| 0.49 0.2401 1.200 | —0.904 0.8172 —0.4430 0.033
31| 0.47 0.2209 1.162 | —0.980 0.9604 —0.4606 0.033
32| 0.41 0.1681 1.125 | —1.064 1.1321 —0.4362 0.034
g3 | 0.36 0.1296 1.092 | —1.159 1.3433 —0.4172 0.035
34| 0.34 0.1156 1.058 | —1.277 1.6307 —0.4342 0.037
a85.1''0.33 0.1089 1.029 | —1.445 2.0880 —0.4769 0.042
2 =22 71 15.8049 —0.987 27.1261 4.6705
z =0.6489 7z = 0.4516 7= —0.0282 42 =0.7750 7y = 0.1334
B =0.1960 A = 0.6544 o= 0.1775

Line of best-fit: z = 0.1960K + 0.6544

1. Method of Moments. By this method, the statistical parameters or moments
are computed from the data and then substituted in the probability function of the
given distribution. This method gives a theoretically exact fitting but the accuracy
can be substantially affected by any errors involved in the data at the tails of the
distribution where the moment arms are long and the errors are thus magnified.
The method originally proposed by Gumbel [23] to fit Type I extremal distribution is a
method of moments. Lieblein [121] modified this method by order statistics and
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developed a procedure which maintains the original time order of the extreme-value
series, divides the values into subgroups, and then weighs each observation according
to its ordered rank in the subgroup which in turn is a function of the sample size.
Hershfield [56] made a comparison of the two procedures and concluded that the
Gumbel procedure gives a better estimate beyond the range of data for the areally
independent data tests, but overestimates the longer recurrence-intervals in the
dependent data tests.

2. Method of Least Squares. By this method, a regression line is computed to
fit the plotted data (Sec. 8-IT). The curve so obtained may not represent the exact
theoretical distribution but it gives a better overall fit than the method of moments.
For extremal distributions, Gumbel [101] introduced a modified least-squares method
by minimizing both vertical and horizontal deviations and taking the geometric mean
of the parameters obtained from the two minimizations. Based on the general
equation for hydrologic frequency analysis, Eq. (8-1-47), proposed by Chow [112], a
least-squares procedure for fitting a normal, lognormal, or extremal distribution was
developed by Brakensiek [127].

Table 8-1-3 shows the computation for fitting annual maximum values plotted on an
extremal probability paper in Fig. 8-I-8. In this table, m is the rank number,  is the
variate or the rainfall depth, and y is the frequency factor K. The recurrence interval
T is computed by Eq. (8-I-56¢), and the frequency factor by Eq. (8-1-53). The
coefficients 4 and B of the least-squares equation are computed by Eqs. (8-1I-8) and
(8-I1-9).

3. Method of Maximum Likelihood. By this method, the value of a parameter
is determined to make the probability of obtaining the observed outcome as high as
possible. Mathematically, 0 log p(z)/du = 0, where p(z) is probability density and
u is a statistical parameter. This method provides the best estimate of the parameters
but it is usually very complicated for practical application. Kimball [128-129] has
suggested this method for fitting extremal distributions, and a practical procedure was
later developed by Panchang and Aggarwal [130].

H. Reliability of Analysis

1. Sampling Reliability. The fact that observed data may exhibit a straight-
line trend on a suitable probability paper but do not exactly follow the theoretical
curve to be fitted leads to the belief that singular sampled events cannot be represented
with perfect confidence by the theory of probability. It is therefore important to
know the reliability of results obtained by the frequency analysis; i.e., to know how well
the individual event agrees with the theoretical prediction derived from the sampled
data.

The curve or distribution function fitted to the hydrologic data can be considered
only to represent either the mean or sometimes the mode of the data at a given
cumulative probability or recurrence interval. The distribution of the data for the
given cumulative probability or recurrence interval can be described by the so-called
confidence limits established on both sides of the fitted curve. Such confidence limits
define the probability density areas on both sides of the mean, or of the mode of an
assumed distribution of the data for the given cumulative probability or recurrence
interval. Control curves, which join the equal confidence limits, can then be drawn
to show the confidence bands. The reliability of any plotted point lying within the
confidence band is thus indicated by the probability on which the confidence limits
are based.

Gumbel [28] has proposed a method for establishing the confidence limits in the
plotting of annual maximum values. This method is based on the principle that the
theoretical value of rank m situated on the straight line and corresponding to a given
recurrence interval is the approximation to the most probable mth value. Considering
a probability equal to 68.269 per cent (i.e., the probability for a deviation of +o from
the predicted value in a normal distribution) , the control curves can be constructed,
respectively, above and below the fitted theoretical straight line on the extremal
probability paper with a vertical distance of Az from the line. In other words, the mth

P W = A

o |
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observation is contained in the confidence band defined by 2 — Az < z < z + Az
It is expected that 68.269 per cent of all possible values would fall within the band
Gringorten [131] has developed a set of graphs for use in contructing such confidence
limits. For practical purposes, the method can be simplified by the approximate
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procedure given below [52]. In Fig. 8-I-8, the control curves are constructed by this
method and the computation is given in Table 8-I-3.
a. For the largest value with m = 1, the half vertical width of the confidence band is

Az, = sF(N) (8-1-57)

where s is the standard deviation of the observed data and F(N) is a function of the N
years of record as expressed graphically in Fig. 8-1-9.
b. For the second largest value with m = 2,

_ 0.661(N +1)

A
o Ntk

Az (8-1-58)

c. For intermediate values of rank m,

st o DB A s gy (8-1-59)
/N

where F(T'y) is a function of the recurrence interval Ty as expressed graphically in
Fig. 8-1-10. When 7'y is greater than 10 years, F(Ty) = \/Tu.

d. For very small values, control curves are generally not necessary. For extrapo-
lation beyond the largest value, Gumbel suggested that the control curves be drawn
as two lines parallel to the extrapolated straight line. This suggestion, however, will
resuiv in sudden breaks on the control curves and in narrowing down the growing
width of the confidence band. Therefore, it is generally not followed. Kimball [12]

— —d——
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has suggested a procedure for constructing the control curves by a method of order
statistics, which avoids such difficulties in extrapolation.

In the above discussion, the confidence limits, which represent the probable errors
of estimate, are computed on the basis of an assumed distribution of errors, since the
actual distribution is unknown. In the case of regional analysis (Subsec. IV-J), an
approximate actual distribution of the sampling errors may be established from the
data obtained from a group of stations in the region of statistical homogeneity. The
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F(T.)
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Fia. 8-1-10. Relation between 7'y and F(Tu).

sampling errors from the station mean for a given recurrence interval can be computed
and analyzed to develop a distribution function. From this function, the per cent
of errors to be equaled or exceeded among a given per cent, say 68.269 per cent, of the
sampled stations can be determined. This per cent of errors multiplied by the variate
z of the given recurrence interval will give the range Az which can be used to construct
the confidence limits. For other recurrence intervals, the confidence limits can be
computed similarly.

Occasionally, the plotted point or points near the two ends of the distribution depart
markedly from the general path indicated by the curve of best-fit. The departure
may be so great that the plotted points fall far outside the confidence band, becoming
the so-called off-control data. It has been explained that such off-control data follow
some other type of distribution which applies to events that may occur at very long
recurrence intervals. In other words, such events are statistically incompatible with
the events with which they are associated in a given sample. Therefore, it is logical
to recognize that these data may have an actual recurrence interval many times greater
than the length of record. Whether or not these data follow the usual pattern or
some other pattern of distribution than that represented by the rest of the data, it
would seem obvious that they cannot be assumed to have a recurrence interval equal
to the value computed by the plotting-position formula for which the available
length of record is used. Consequently, inclusion of the off-control data in the com-
putation of a theoretical probability curve would produce a different resulé from the one
the sample should indicate. Since the off-control data are, in a sense, nonhomogeneous
with the rest of the sample, they should be excluded from the fitting of the data. If
the theoretical curve first computed using all data produces off-control data, the curve
should be recomputed by excluding the latter unless the off-control data are assumed
to be homogeneous with the total sample.

Lam . . Ny - - e




8-34 FREQUENCY ANALYSIS

2. Prediction Reliability. In the above discussion on sampling reliability, the
probable error in the estimate of the variate by frequency analysis for a given recur-
rence interval is considered. Such errors which would affect the reliability of the
result are largely due to sampling defects. There is another problem which relates to
the probability of an event of a given average recurrence interval occurring during a
given period of time. This probability would affect the reliability of prediction on
the basis of the recurrence interval obtained from data fitting.

As described in Subsection IV-C, the recurrence interval is considered as the mean
time interval but not as the actual time interval between two events of the given
magnitude. Once the variate of a given recurrence interval is obtained from the
fitted data, it is desirable to know the probability that this variate will occur in the
forthcoming period of n years. This probability or the variation of recurrence
interval of an event having a given magnitude about the mean recurrence intervals
has been studied by many hydrologists using nonparametric probabilities [36, 42,
132-133].

From a fitted cumulative probability curve, the probability P(X < z) corresponding
to a variate x represents the probability that the value z will not be equaled or exceeded
during a certain time interval. By the multiplicative law of probability, the prob-
ability of not exceeding the value of z in n years for an independent series of events is

or BCE >y

[P(X < )] (8-1-60)
TP e (8-1-61)

Since the recurrence interval 7' = 1/P(X > z),

b 3R g (1 2 —;)" (8-1-62)

Thus,
in P(X < #5p% wiln [le— P(XE >ig),]
O InBX: < @) v o dndl v P (- 227
_In[1 = P(X > )
- I [(T —1)/T]

(8-1-63)

The value of P(X < z), P(X > z), or T of a given variate z can be obtained from
the fitted data. The probability that this variate will occur in a period of n years can
be computed by Eq. (8-I-61) or (8-I-62). If this probability P(X > z), is given
according to a design policy, the value of n, known as a design period, can be computed
by Eq. (8-I-63). As an illustration, an additional scale is shown on top of the diagram
in Fig. 8-I-8 for P(X > z),in n = 10 years. The scale is computed by means of Eq.
(8-I-63). Thus, the probability that a 10-min rainfall depth of 0.91 in. with a recur-
rence interval of 10 years will have a chance of 65 per cent to occur in the next 10 years.
If a chance of 50 per cent occurrence in the next 10 years is considered in the design,
the design rainfall should be 0.97 in. and have a recurrence interval of 15 years.
Similarly, another scale for 20 years can be drawn and it can be shown that this rainfall
of 0.91 in. will have a chance of 88 per cent to occur in the next 20 years.

I. Theoretical Justifications

From a practical point of view, the frequency analysis is only a procedure to fit
the hydrologic data to a mathematical model of distribution. It is only experience
and verification of data that decide the use of a certain distribution. However, there
are several theoretical interpretations or reasonings for the preference of one distribu-
tion to another. Such interpretations would describe a physical process of the
hydrologic phenomena and thus help to understand the procedure of frequency analysis
and the significance of the results, but they are usually based on a number of assump-
tions which may not be readily satisfied in the real world. Most theoretical distribu-
tions recommended for hydrologic frequency analysis are asymptotic. The asymp-
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totic condition is valid only when the number of variates becomes indefinitely large.

Most of these distributions also assume independent variables. In actual hydrologic
phenomena, however, the number of variates is always limited and mostly of small
size, and the variables are likely to be interdependent to a certain extent.

1. Type I Extremal Distribution. This distribution was first proposed by
Gumbel [23] for the analysis of flood frequencies. Gumbel considered the daily flow
as a statistical variable unlimited to the positive end of the distribution, and defined
a flood as being the largest value of the 365 daily flows. The flood flows are therefore
the largest values of flows. According to the theory of extreme values, the annual
largest values of a number of years of record will approach a definite pattern of fre-
quency distribution when the number of observations in each year becomes large.
Thus, the annual maximum floods constitute a series which can be fitted in the
theoretical extremal distribution of Type I. Although it has been questioned whether
the number of observations in a year is large enough for the asymptotic distribution to
be approached, practical applications have shown satisfaction with the use of this
theory to many problems.

In applying this theory to some meteorological data, Barricelli [134] and Brooks
and Carruthers [1] have found some defects and therefore modified the theory in their
use. They found that for temperatures, the Gumbel approximation overestimates,
and for rainfall, underestimates, the maximum values reached in long periods. Asa
further improvement, Jenkinson [135] derived a general solution of the functional
equation which should satisfy the extreme values of all types of distributions applicable
to meteorological data. Borgman [136] proposed a distribution of near extremes
which can be applied to limited and small-size samples.

2. Lognormal Distribution. This distribution has been used empirically for
hydrologic frequency analysis since Hazen [12] first proposed it in 1914 for flood
studies. In 1955, Chow [15] offered a theoretical interpretation to justify its
use. Chow considered that the occurrence of a hydrologic event is a result of the
joint action of many causative factors. Thus, a variate z is equal to the product of a
large number of r independent magnitudes 1, zs, . . . z, which are respectively due
to the r causative factors. The logarithm of z is therefore equal to the sum of loga-
rithms of a very large number of independent variates. By the central limit theorem,
it can be shown that the logarithm of z is normally distributed when r becomes
infinitely large.

The lognormal distribution contains three interdependent parameters. When
hydrologic data are plotted on a lognormal probability paper, a straight-line trend is
possible only for one value of C; when C, is given. Figure 8-I-11 shows that the plot is
theoretically a straight line only for C, = 1.139 when C, = 0.364. For other values of
Cs, the plots are curved for C, = 0.364. Since the value of C, computed from ordinary
hydrologic data is not so reliable, it has been suggested that if the plot shows curvature,
the value of C, should be modified so that a straight line is obtained. Otherwise, a
special probability paper may be constructed if a straight-line plot for the original
value of C, is desired [15].

3. Exponential Distribution. The exponential distribution has been applied
empirically to partial-duration series. However, Chow [52] reasoned that the prob-
ability p(z) of occurrence of a variate is the product of the probabilities of » number of
causative factors. Thus, p(z) = p” where p is the geometric mean probability of all
causative factors. When 7 is infinitely large and =z is of high magnitude, it can be
shown mathematically that the distribution of z is exponential.

4. Logextremal Distribution. The Type III extremal distribution was first
proposed by Gumbel [57] for drought frequency analysis. Gumbel defined the drought
as the smallest annual values of the mean daily discharges of a river. Since there is
always a limit to the drought with a minimum of zero, Type III extremal distribution
is assumed to be suitable. In this distribution, Eq. (8-1-36), three parameters are
involved. The parameter e is the lower limit called the minimum drought. This is
the drought for which the probability of a value equal to or greater than it is unity and
the recurrence interval is infinite. The parameter 0 is called the drought characteristic,
which has a recurrence interval of 1.58198 years. The parameter k has no particular
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name with reference to the drought, but its reciprocal is a scale parameter which
defines skewness. '

In applying Gumbel’s method to drought solution, the droughts can be plotted on
logextremal probability paper. If e = 0, the plot should have a straight-line trend.
If € > 0, the plot will appear curved at the side of the long recurrence intervai.
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F1a. 8-1-11. Lognormal probability plotting.

The parameters of the distribution may be computed by statistical fitting of the
distribution function. For extrapolation, the computed distribution function can be
used since graphical extension of the curve may not be easy.

J. Regional Analysis

The observations at a geographical point, such as at the site of a rain gage or a

stream gaging station, are point data. Extension of the results of the frequency
analysis of the point data to an area requires regional analysis. Various methods of }
regional analysis have been developed, including the station-year method for rainfall I
analysis (Sec. 9) and the regional methods for flood analysis [38] (Subsec. 25-I-111-B-I).
For all these methods, a statistically homogeneous region is defined. Within such
regions, the results of point-data analysis can be averaged to best represent the fre-
quency characteristics of the whole region. Usually, an average probability curve so
obtained is applicable throughout the region.

In order to define a homogeneous region, a test has been developed by Langbein
[7, 137] for regional flood-frequency analysis practiced by the U.S. Geological Survey
(Subsec. 25-1-ITI-B-1). This homogeneity test requires a study of the 10-year flood
as estimated from the probability curve at each station within a region. These
10-year floods expressed as ratios to mean annual floods (which have a recurrence
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interval of 2.33 years according to the extremal distribution) are averaged to obtain
the mean 10-year ratio for the area. The recurrence interval corresponding to the
mean annual flood times the averaged 10-year ratio is determined from the probability
curve of each station and plotted against the number of years of record on a test graph
Fig. 8-1-12). If the points for all of the stations lie between the two control curves
{indicating 95 per cent reliability) on the graph, they are considered homogeneous.

150 \
100 NG
80 N
60 AN

®O
s

&
L]

Recurrence interval,in year:

/

7

B0 20 30 40 50 60
Effective length of record,in years

I R X )

Fie. 8-1-12. Homogeneity test graph. (U.S. Geological Survey.)

Points outside the curves indicate that the region should be subdivided for homo-
geneity. Repeat the procedure until all the subdivided areas pass the homogeneity
test.

The principle of the above test is to determine in a statistical sense whether the
records in a group differ from one another by amounts that cannot reasonably be
expected by chance. If the differences are found to be no more than those due to the
operations of chance, they can be considered to represent merely different aspects of
the same event and thus can be grouped. The test graph is constructed on the basis
of the extremal distribution. The control curves represent a range of variation equal
to two standard deviations of the reduced variate [i.e., (¢ + z)/c in Eq. (8-1-33)] on
the 10-year flood. This means that 95 per cent of the estimate will lie within 2¢ of
the most probable value of a recurrence interval of 10 years. The 10-year flood is used
in this test because this is the longest recurrence interval for which most flood records
will give dependable estimates.
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